DOI QR코드

DOI QR Code

Study on Anti-oxidative Activities and Beverage Preferences Relating to Fermented Lotus Root and Platycodon grandiflorum Extracts with Sugar through Lactic Acid Fermentation

젖산발효한 연근, 도라지 당추출 발효액의 항산화 활성과 음료기호성에 관한 연구

  • Lee, Kyung-Soo (School of Tourism & Food Service, Division of Food, Beverage & Culinary Arts, Yeungnam University College) ;
  • Kim, Ju-Nam (School of Tourism & Food Service, Division of Food, Beverage & Culinary Arts, Yeungnam University College) ;
  • Chung, Hyun-Chae (School of Tourism & Food Service, Division of Food, Beverage & Culinary Arts, Yeungnam University College)
  • 이경수 (영남이공대학교 관광외식학부 식음료조리계열) ;
  • 김주남 (영남이공대학교 관광외식학부 식음료조리계열) ;
  • 정현채 (영남이공대학교 관광외식학부 식음료조리계열)
  • Received : 2015.01.26
  • Accepted : 2015.02.28
  • Published : 2015.02.27

Abstract

This study aimed to produce fermented extracts with sugar made from lotus root (LR) and Platycodon grandiflorum (PG), using lactic acid fermentation, and confirmed their physiological and anti-oxidative activities as basic data for manufacturing functional drinks through sensory tests. For the final sugar concentrations, PG showed $48.1^{\circ}brix$ and LR showed $52.0^{\circ}brix$. Sugar concentrations during lactic acid fermentation following dilution of sugar to $12^{\circ}brix$, ranged from $11.5{\sim}12.1^{\circ}brix$ for PG and $11.9{\sim}12.4^{\circ}C$ for LR. During lactic acid fermentation, lactic acid bacteria numbers tended to decrease in both fermented LR and PG extracts with sugar as the fermentation period increased. For DPPH radical scavenging ability, LR was three times higher in control without lactic acid fermentation while PG showed significant increases in L. acidophilus (77%), L. brevis (90%), and L. delbrueckii (177%) during lactic acid fermentation. For total polyphenol content, LR showed a higher concentration than PG, and except for fermented L. delbrueckii extract showing similarity with the control, contents of fermented extracts decreased. In the case of PG, CUPRAC, increased significantly in L. brevis, whereas FRAP, increased significantly in L. delbrueckii with lactic acid fermentation. For reducing power, except for fermentation with L. brevis, all PG showed lower reducing power activities. In the sensory test of fermented LR and PG extracts with sugar, both fermented extracts showed better results with L. brevis or L. delbrueckii than control or those with L. acidophilus in every item. Based on these results, it is highly possible to develop fermented extract drinks with sugar using LR or PG. In particular, lactic acid bacteria such as L. delbrueckii and L. brevis showed generally higher activities with potential as a functional drink.

본 연구는 가정에서 즐겨 먹는 대표적인 근채류인 연근과 도라지의 당추출 발효액을 제조하고, 이를 젖산발효시켜 발효액을 제조한 후 생리활성과 항산화 활성을 확인하고, 관능 검사를 통해 기능성 음료 제조 가능성을 대한 기초 자료로 조사하고자 하였다. 최종 당 농도는 도라지가 $48.1^{\circ}brix$, 연근이 $52.0^{\circ}brix$로 나타났다. 당추출 발효액을 $12^{\circ}brix$로 희석한 후 젖산발효하는 동안 변화하는 당 농도는 도라지가 $11.5{\sim}12.1^{\circ}brix$, 연근이 $11.9{\sim}12.4^{\circ}brix$ 범위로 나타났다. 젖산 발효기간 동안 초기 젖산균은 $10^{9{\sim}10}CFU/mL$ 수준이었으나, 연근 및 도라지 젖산발효액 둘 다 발효기간이 늘어날수록 감소하는 경향이었다. DPPH radical scavenging ability을 조사한 결과, 젖산발효하지 않은 control인 경우 연근이 도라지보다 3배 이상 우수한 것으로 나타났고, 젖산발효시 도라지인 경우 control보다 각각 L. acidophilus(77%), L. brevis(90%), L. delbrueckii(177%) 정도 유의적으로 증가한 것으로 나타났다. 총 폴리페놀함량 역시 연근이 도라지보다 함량이 많았으며, control과 비슷하게 나타난 L. delbrueckii 발효액을 제외하고는 젖산발효시 감소하는 것으로 나타났다. 도라지인 경우 CUPRAC 측정시 L. brevis에서, FRAP 측정시는 L. delbrueckii로 젖산발효시 유의적으로 증가하는 것으로 나타났다. 환원력은 도라지에서 L. brevis로 젖산발효한 경우를 제외하고 모두 감소하는 것으로 나타났다. 연근과 도라지 젖산발효액의 관능검사 결과, 두 발효액 모두 control이나 L. acidophilus 보다 L. brevis, L. delbrueckii로 젖산발효한 액의 관능검사 결과가 모든 면에서 좋게 나타났다. 이상의 관능검사 결과, 연근이나 도라지를 이용한 당추출 젖산발효 음료로써의 개발 가능성이 높을 것으로 판단되었으며, 특히 L. delbrueckii와 L. brevis 같은 일부 젖산균은 전반적으로 활성이 좋게 나타나, 기능성 젖산발효 음료로 제조하는데 우수할 것으로 판단되었다.

Keywords

References

  1. Ancerewicz J, Migliavacca E, Carrupt PA, Testa B, Bree F, Zini R, Tillement JP, Labidalle S, Guyot D, Chauvet-Monges AM, Frevat A, Le Ridant A (1998) Structure-property relationships of trimetazidine derivatives and model compounds as potential antioxidants. Free Radical Bio Med 25: 113-120. https://doi.org/10.1016/S0891-5849(98)00072-0
  2. Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma( FRAP) as a measure of "Antioxidant power": The FRAP Assay. Anal Biochem 239: 70-76. https://doi.org/10.1006/abio.1996.0292
  3. Blois MS (1958) Antioxidant determination by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  4. Chen J, Small-Haward A, Yin A, Berry MJ (2005) The responses of HT-22 cells to oxidative stress induced by buthionine sulfoximine(BSO). BMC Neurosci 6: 1-8. https://doi.org/10.1186/1471-2202-6-1
  5. Folin O, Denis W (1912) On phosphotungstic-phosphomolybdic compounds as color reagents. J Biol Chem 12: 239-243.
  6. Griffin SP, Bhagooli R (2004) Measuring antioxidant potential in coral using the Frap assay. J Exp Mar Biol Ecol 302: 201-211. https://doi.org/10.1016/j.jembe.2003.10.008
  7. Jang JH, Na KC, Kim WS, Lee JS (2010) Manufacture and characteristics of functional drink using pear-strawberry fermentative concentrates from fermentation by Saccharomyces cerevisiae C-2. The Korean Journal of Mycology 38: 189-191. https://doi.org/10.4489/KJM.2010.38.2.189
  8. Jang JR, Hwang SY, Lim SY (2011) Inhibitory effect of extracts of Platycodon grandiflorum(the Ballon flower) on oxidation and nitric oxide production. Korean J Food Preserv 18: 65-71. https://doi.org/10.11002/kjfp.2011.18.1.065
  9. Jeong CH, Shim KH (2006) Chemical composition and antioxidative activites of Platycodon grandiflorum leaves and stems. J Korean Soc Food Sci Nutr 35: 511-515. https://doi.org/10.3746/jkfn.2006.35.5.511
  10. Kim CH, Jung BY, Jung SK, Lee CH, Lee HS, Kim BH, Kim SK (2010) Evaluation of antioxidant activity of Platycodon grandiflorum. J Environ Toxicol 25: 85-94.
  11. Kim MJ, Yang SA, Park JH, Kim HI, Lee SP (2011) Quality characteristics and anti-proliferative effects of dropwort extracts fermented with fructooligosaccarides on HepG2 cells. Korean J Food Sci Technol 43: 432-437. https://doi.org/10.9721/KJFST.2011.43.4.432
  12. Kim NM, Lee JS(2003) Effect of fermentation periods on the qualities and physiological functionalities of the mushroom fermentation broth. The Korean Journal of Mycology 31: 28-33. https://doi.org/10.4489/KJM.2003.31.1.028
  13. Kim NM, Lee JW, Do JH, Park CK, Yang JW (2005) Effects of the fermentation periods on the qualities and functionality of the vegetable fermentation broths. Korean J Medicinal Crop Sci 13: 293-299.
  14. Kim NM, Lee JW, Do JH, Yang JW (2003) Effects of the fermentation periods on the qualities and functionalities of the fermentation broth of wild vegetables. Korean J Food Sci Technol 35: 272-279.
  15. Korean Food Composition Table (1996) Ministry of Food & Drug Safety. Korea. p 88.
  16. Korean Food Standards Codex (2008) Korean Food & Drug Administration, Korea. 10-1-1, 10-1-6.
  17. Ku KM, Kim BS, Kang YH (2009) Antioxidant activities and antioxidant constituents of pepper leaves from various cultivars and correlation between antioxidant activities and antioxidant constituents. J Appl Biol Chem 52: 70-76. https://doi.org/10.3839/jabc.2009.013
  18. Lee JB, Bae JS, Son IK, Jeon CP, Lee EH, Joo WH, Kwon GS (2014) Antioxidant and ACE inhibiting activities of sugared-buchu(Allium ampeloprasum L. var. porum J. Gay) fermented with lactic acid bacteria. J Life Science 24: 671-676. https://doi.org/10.5352/JLS.2014.24.6.671
  19. Lee JJ, Ha JW, Lee MY (2007) Antioxidative activity of lotus root(Nelumbo nucifera G.) extracts. J Life Science 17: 1237-1243. https://doi.org/10.5352/JLS.2007.17.9.1237
  20. Lee JJ, Park SY, Lee YM, Lee MY (2006) Protective effects of lotus root(Nelumbo nucifera G.) extract on hepatic injury induced by alcohol in rats. Korean J Food Preserv 13: 774-782.
  21. Lee KH, Kim YS, Lee JY (2013) Changes of nutrient composition and antioxidative activities of fermented tea during fermentation. Korean J Food & Nutr 26: 398-403. https://doi.org/10.9799/ksfan.2013.26.3.398
  22. Lee YJ, Yoon BR, Kim DB, Kim MD, Lee DW (2012) Antioxidant activity of fermented wild grass extracts. Korean J Food & Nutr 25: 407-412. https://doi.org/10.9799/ksfan.2012.25.2.407
  23. Mau JL, Lin HC, Song SF (2002) Antioxidant properties of several specialty mushrooms. Food Res Int 35: 519-526. https://doi.org/10.1016/S0963-9969(01)00150-8
  24. Nakatani N (1990) Recent advances in the study on natural antioxidants. Nippon Shokuhin Kogyo Gakkaishi 37: 569-576. https://doi.org/10.3136/nskkk1962.37.7_569
  25. Nozaki K (1986) Current aspect and future condition of phytogenic antioxidants. Fragrance J 6: 99-106.
  26. Park SH, Sihn EH, Koo JG, Lee TH, Han JH (2005) Effects of Nelumbo nucifera on the regional cerebral blood flow and blood pressure in rats. J East Asian Soc Dietary Life 15: 49-56.
  27. Park YS, Chang HG (2003) Lactic acid fermentation and biological activities of Rubus coreanus. J Korean Soc Agricultural Chem Biotech 46: 367-375.
  28. Resat A, Kubilay G, Mustafa O, Saliha EK (2004) Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of necuproine method. J Agric Food Chem 52: 7970-7981. https://doi.org/10.1021/jf048741x
  29. Rhim TJ (2013) In vitro antioxidant activity of sanguisorbae radix ethanol extracts. Korean J Plant Res 2: 149-158.
  30. Sa YJ, Kim MO, Jeong HJ, Yu CY, Park DS, Kim MJ (2010) Comparative study of eletron donating ability, reducing power, antimicrobial activity and inhibition of $\alpha$-glucosidase by soghum bicolor extracts. Korean J Food Sci Technol 42: 598-604.
  31. Seo DS, Lee EN, Cho CH, Lee JS (2007) Manufacture and physiological functionalities of some natural plant fermentation broths and liquor. J Natural Sci Pai Chai University, Korea 18: 39-46.
  32. Seo SJ, Choi YM, Lee SM, Kong SY, Lee JS (2008) Antioxidant activities and antioxidant compounds of some specialty rices. J Korean Soc Food Sci Nutr 37: 129-135. https://doi.org/10.3746/jkfn.2008.37.2.129
  33. Sung JM, Choi HY (2014) Effect of mulberry powder on antioxidant activities and quality characteristics of yogurt. J Korean Soc Food Sci Nutr 43: 690-697. https://doi.org/10.3746/jkfn.2014.43.5.690
  34. Whang TE, Lim HO, Lee JW (1999) Effect of fermented Oenanthe stolonifera DC extract on the activity of enzymes related to liver function of alcohol-administered rats and mice. Korean J Medicinal Crop Sci 7: 107-114.
  35. Yang CY, Cho MJ, Lee CH (2011) Effects of fermented turmeric extracts on the obesity in rats fed a high-fat diet. J Animal Sci Technol 53: 75-81. https://doi.org/10.5187/JAST.2011.53.1.75

Cited by

  1. 젖산발효 처리에 의한 도라지의 Platycosides 조성 및 호흡기질환 유발세균에 대한 항균 활성 변화 vol.45, pp.7, 2015, https://doi.org/10.3746/jkfn.2016.45.7.1017
  2. MSG 첨가 비율을 달리한 섬애약쑥(Artemisia argyi H) 식혜의 유산균 발효에 따른 이화학적 특성 vol.24, pp.2, 2015, https://doi.org/10.11002/kjfp.2017.24.2.254
  3. 연근과 우절 에탄올 추출물의 향장효능 검증 vol.34, pp.3, 2015, https://doi.org/10.12925/jkocs.2017.34.3.657
  4. Lactobacillus plantarum DK119로 발효한 약용식물 당침액의 특성 vol.50, pp.2, 2018, https://doi.org/10.9721/kjfst.2018.50.2.179
  5. Polyphenolic Profile of Fermented Houttuynia cordata Thunb. and Overall Contribution to Antioxidant and Lipolytic Activities vol.22, pp.4, 2015, https://doi.org/10.13050/foodengprog.2018.22.4.295
  6. 소금 첨가에 따른 도라지 발효 특성과 미생물 변화 및 항비만 효능 평가 vol.18, pp.2, 2018, https://doi.org/10.15429/jkomor.2018.18.2.64
  7. Quality characteristics of lotus root (Nelumbo nucifera G.) snacks according to heat treatment methods and conditions vol.28, pp.3, 2015, https://doi.org/10.11002/kjfp.2021.28.3.344