DOI QR코드

DOI QR Code

Characteristics and Cellular Protective Effects against UVA of Cationic Liposome Loaded with Quercetin and Rutin

쿼세틴과 루틴을 담지한 양이온 리포좀의 특성조사 및 UVA에 대한 세포 보호 효과

  • Gu, Hyun A (A Department of Fine Chemistry, Cosemetic R&D Center, Seoul National University of Science and Technology) ;
  • Kim, Moon Jin (A Department of Fine Chemistry, Cosemetic R&D Center, Seoul National University of Science and Technology) ;
  • Kim, Hae Soo (A Department of Fine Chemistry, Cosemetic R&D Center, Seoul National University of Science and Technology) ;
  • Ha, Ji Hoon (A Department of Fine Chemistry, Cosemetic R&D Center, Seoul National University of Science and Technology) ;
  • Yu, Eun Ryung (A Department of Fine Chemistry, Cosemetic R&D Center, Seoul National University of Science and Technology) ;
  • Park, Soo Nam (A Department of Fine Chemistry, Cosemetic R&D Center, Seoul National University of Science and Technology)
  • 구현아 (서울과학기술대학교 정밀화학과 나노바이오화장품연구실, 화장품종합기술연구소) ;
  • 김문진 (서울과학기술대학교 정밀화학과 나노바이오화장품연구실, 화장품종합기술연구소) ;
  • 김해수 (서울과학기술대학교 정밀화학과 나노바이오화장품연구실, 화장품종합기술연구소) ;
  • 하지훈 (서울과학기술대학교 정밀화학과 나노바이오화장품연구실, 화장품종합기술연구소) ;
  • 유은령 (서울과학기술대학교 정밀화학과 나노바이오화장품연구실, 화장품종합기술연구소) ;
  • 박수남 (서울과학기술대학교 정밀화학과 나노바이오화장품연구실, 화장품종합기술연구소)
  • Received : 2015.01.02
  • Accepted : 2015.03.03
  • Published : 2015.04.10

Abstract

Quercetin and its glycoside, rutin, are flavonoids, which are well known as natural antioxidants. In this study, cationic liposomes loaded with flavonoids (quercetin or rutin) were investigated for their effects on cell and skin permeability, and protective effects against UVA. The particle size of the empty cationic liposomes was in the range of 100~130 nm, and the zeta potential was + 33.05 mV. The entrapment efficiency of 0.5R/CL was higher than that of 0.5 Q/CL. The cellular uptake of the cationic liposomes was five-fold higher than that of liposomes. The skin permeability of quercetin and rutin was investigated using Franz diffusion cells. Compared to the initial loading dose, the amount of quercetin or rutin delivered to the skin by cationic liposomes was higher than that delivered by conventional liposomes or phosphate-buffered saline. From the protective effect of cationic liposomes against UVA ($25J/cm^2$), we found that the cell viability in cationic liposomes containing flavonoids was higher than that of using UVA irradiation only. These results indicate that cationic liposomes provide enhanced delivery of flavonoids (quercetin and rutin) into the skin and may be used for antiaging and antioxidant cosmetics.

쿼세틴과 쿼세틴의 배당체인 루틴은 천연 항산화제로 잘 알려진 플라보노이드이다. 본 연구에서는 플라보노이드(쿼세틴과 루틴)를 담지한 양이온 리포좀을 제조하여 세포 및 피부 투과성과 자외선(UVA)에 대한 HaCaT 세포 보호 효과를 평가하였다. 빈 양이온 리포좀의 입자 크기는 100~130 nm이며, 입자 표면 전위는 + 33.05 mV를 나타내었다. 포집효율은 루틴을 담지한 리포좀과 양이온 리포좀이 쿼세틴을 담지한 경우보다 높았다. 세포 내 이입율 비교결과, 양이온 리포좀이 일반 리포좀에 비해 약 5배 정도 높음을 확인했다. In vitro 상에서, 쿼세틴과 루틴이 용해된 PBS (phosphate-buffered saline) 수용액, 동량의 쿼세틴과 루틴을 담지한 리포좀과 양이온 리포좀의 피부투과율을 비교하였다. 양이온 리포좀에 담지하였을 경우 가장 높은 피부투과율을 보였다. 플라보노이드를 담지한 양이온 리포좀의 자외선(UVA $25J/cm^2$)에 대한 HaCaT 세포 보호 효과를 측정한 결과, 자외선만 조사한 군에 비해 플라보노이드 담지 양이온 리포좀을 처리한 군에서 높은 세포 보호 효과를 보였다. 결과적으로, 양이온 리포좀은 플라보노이드를 피부 속으로 전달하는데 있어서 매우 유용한 피부 전달 시스템임을 확인하였다. 따라서, 세포 보호 및 피부 흡수 증진 효과를 가지는 양이온 리포좀은 항노화 및 항산화 화장품 제형으로써 활용 가능성이 있음을 시사한다.

Keywords

References

  1. N. R. Jo, C. I. Park, C. W. Park, D. H. Shin, Y. C. Hwang, Y. H. Kim, and S. N. Park, Cellular protective effects of Peanut sprout root extracts, Appl. Chem. Eng., 23, 183-189 (2012).
  2. O. K. Kim, J. N. Ho, D. E. Nam, W. J. Jun, and J. M. Lee, Anti-wrinkle activity of a Curdrania tricuspidata extract on ultraviolet- induced photoaging, J. Korean Soc. Food Sci. Nutr., 42, 608-614 (2013). https://doi.org/10.3746/jkfn.2013.42.4.608
  3. H. J. Yang, Y. J. Ahn, J. H. Kim, and S. N. Park, Antioxidative activity and component analysis of Quercus glauca leaf extracts, J. Soc. Cosmet. Scientists Korea, 34, 189-200 (2008).
  4. S. N. Park, H. J. Lee, H. S. Kim, M. A. Park, and H. A. Gu, Enhanced transdermal deposition and characterization of quercetin- loaded ethosomes, Korean J. Chem. Eng, 30, 688-692 (2013). https://doi.org/10.1007/s11814-012-0171-4
  5. E. Cadenas, Biochemistry of oxygen toxicity, Ann. Rev. Biochem., 58, 79-110 (1989). https://doi.org/10.1146/annurev.bi.58.070189.000455
  6. A. Naqui and B. Chance, Reactive oxygen intermediate in biochemistry, Ann. Rev. Biochem., 55, 137-166 (1986). https://doi.org/10.1146/annurev.bi.55.070186.001033
  7. J. C. Fantone and P. A. Ward, Role of oxygen-derived free radicals and metabolites in leukocyte dependent inflammatory reaction, Am. J. Pathol., 107, 395 (1982).
  8. D. H. Won, S. Y. Kim, G. N. Lim, and S. N. Park, A study on the stability of DOPC liposome, J. Soc. Cosmet. Scientists Korea, 37, 55-60 (2011).
  9. S. N. Park, M. H. Lee, S. J. Kim, and E. R. Yu, Preparation of quercetin and rutin-loaded ceramide liposomes and drug-releasing effect in liposome-in-hydrogel complex system, BBRC, 435, 361-366 (2013).
  10. B. S. Jin, Y. M. Han, K. H. Lee, and M. J. Cho, Preparation and characterization of calcein entrapped ethosome, J. Korean Ind. Eng. Chem., 15, 205-210 (2004).
  11. G. M. El Maghraby, B. W. Barry, and A. C. Williams, Liposome and skin: From drug delivery to model membrane, Eur. J. Pharm. Sci., 34, 203-222 (2008). https://doi.org/10.1016/j.ejps.2008.05.002
  12. A. Hasanovic, C. Hollick, K. Fischinger, and C. Valenta, Improvement in physicochemical parameters of DPPC liposomes and increase in skin permeation of aciclovir and minoxidil by the addition of cationic polymers, Eur. J. Pharm. Biopharm., 75, 148-153 (2010). https://doi.org/10.1016/j.ejpb.2010.03.014
  13. L. Caroline, V. Michel, and J. M. Ruysschaert. Cationic lipids activate intracellular signaling pathways, Adv. Drug. Deliv. Rev., 64, 1749-1758 (2012). https://doi.org/10.1016/j.addr.2012.05.009
  14. C. Lonez, M. Vandenbranden, and J. Ruysschaert, Cationic liposomal lipids: From gene carriers to cell signaling, Prog. Lipid Res., 47, 340-347 (2008). https://doi.org/10.1016/j.plipres.2008.03.002
  15. C. R. Evans, N. Miller, and G. Paganga, Antioxidant properties of phenolic compounds, Trends Plant Sci., 2, 152-159 (1997). https://doi.org/10.1016/S1360-1385(97)01018-2
  16. S. Jain, A. K. Tiwary, B. Sapra, and N. K. Jain, Comparison of different Water/Oil microemulsions containing diclofenac sodium: Preparation, characterization, release rate, and skin irritation studies, AAPS Pharm. Sci. Tech., 8, E1 (2007).
  17. S. Jain, P. Jain, and N. K. Jain, Transfersomes a novel vesicular carrier for enhanced transdermal delivery: development, characterization, and performance evaluation, Drug Dev. Ind. Pharm., 29, 1013-1026 (2003). https://doi.org/10.1081/DDC-120025458
  18. H. Lv, S. Zhang, B. Wang, S. Cui, and J. Yan, Toxicity of cationic lipids and cationic polymers in gene delivery, J. Control. Release, 114, 100-109 (2006). https://doi.org/10.1016/j.jconrel.2006.04.014
  19. D. Nina, G. Susanna, G. Burkhard, W. Sven, and F. Alfred, Surface charged temoporfin-loaded flexible vesicles: In vitro skin penetration studies and stability, Int. J. Pharmaceutics, 384, 100-108 (2010). https://doi.org/10.1016/j.ijpharm.2009.10.006
  20. S. Kimuraa, E. Warabia, T. Yanagawa, D. Ma, K. Itoh, Y. Ishii, Y. Kawachi, and T. Ishii, Essential role of Nrf2 in keratinocyte protection from UVA by quercetin, BBRC, 387, 109-114 (2009).
  21. S. L. Yeh, W. Y. Wang, C. H. Huang, and M. L. Hu, Pro-oxidative effect of $\beta$-carotene and the interaction with flavonoids on UVA-induced DNA strand breaks in mouse fibroblast C3H10T1/2 cells, J. Nutr. Biochem., 16, 729-735 (2005). https://doi.org/10.1016/j.jnutbio.2005.03.012

Cited by

  1. Phosphatidic Acid Production by PLD Covalently Immobilized on Porous Membrane vol.21, pp.4, 2015, https://doi.org/10.7464/ksct.2015.21.4.224
  2. Characterization and Transdermal Delivery of Ethosomes Loaded with Liquiritigenin and Liquiritin vol.26, pp.5, 2015, https://doi.org/10.14478/ace.2015.1072
  3. 우엉 뿌리 추출물의 항산화 활성 및 세포 독성 평가 vol.34, pp.1, 2015, https://doi.org/10.12925/jkocs.2017.34.1.41