DOI QR코드

DOI QR Code

Impacts of Soil Texture on Microbial Community of Orchard Soils in Gyeongnam Province

  • Kim, Min Keun (Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Sonn, Yeon-Kyu (National Academy of Agricultural Science, Rural Development Administration) ;
  • Weon, Hang-Yeon (National Academy of Agricultural Science, Rural Development Administration) ;
  • Heo, Jae-Young (Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Jeong, Jeong-Seok (Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Choi, Yong-Jo (Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Lee, Sang-Dae (Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Shin, Hyun-Yul (Gyeongsangnam-do Office of Planning and Coordination) ;
  • Ok, Yong Sik (Biochar Research Center, Department of Biological Environment, Kangwon National University) ;
  • Lee, Young Han (Gyeongsangnam-do Agricultural Research and Extension Services)
  • Received : 2015.02.24
  • Accepted : 2015.04.22
  • Published : 2015.04.30

Abstract

Soil management for orchard depends on the effects of soil microbial activities. The present study evaluated the soil microbial community of 25 orchard (5 sites for sandy loam, 7 sites for silt loam, and 13 sites for loam) in Gyeongnam Province by fatty acid methyl ester (FAME) method. The average values for 25 orchard soil samples were $270nmol\;g^{-1}$ of total FAMEs, $72nmol\;g^{-1}$ of total bacteria, $34nmol\;g^{-1}$ of Gram-negative bacteria, $34nmol\;g^{-1}$ of Gram-positive bacteria, $6nmol\;g^{-1}$ of actinomycetes, $49nmol\;g^{-1}$ of fungi, and $7nmol\;g^{-1}$ of arbuscular mycorrhizal fungi. In addition, silt loam soils had significantly low ratio of cy17:0 to $16:1{\omega}7c$ and cy19:0 to $18:1{\omega}7c$ compared with those of loam soils (p < 0.05), indicating that microbial activity increased. The average soil microbial communities in the orchard soils were 26.7% of bacteria, 17.9% of fungi, 12.6% of Gram-negative bacteria, 12.5% of Gram-positive bacteria, 2.5% of arbuscular mycorrhizal fungi, and 2.2% of actinomycetes. The soil microbial community of Gram-negative bacteria in silt loam soils was significantly higher than those of sandy loam and loam soils (p < 0.05).

Keywords

References

  1. Ahn, B.K., H.J. Kim, S.S Han, Y.H. Lee, and J.H. Lee. 2011. Response of microbial distribution to soil properties of orchard field in Jeonbuk Area. Korean J. Soil Sci. Fert. 44:696-701. https://doi.org/10.7745/KJSSF.2011.44.5.696
  2. Bossio, D.A. and K.M. Scow. 1998. Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization patterns. Microb. Ecol. 35:265-278. https://doi.org/10.1007/s002489900082
  3. Bradleya, K., A. Rhae, R.A. Drijberb, and J. Knopsc. 2006. Increased N availability in grassland soils modifies their microbial communities and decreases the abundance of arbuscular mycorrhizal fungi. Soil Biol. Biochem. 38:1583-1595. https://doi.org/10.1016/j.soilbio.2005.11.011
  4. Choi, M.T., J.I. Lee, Y.U. Yun, J.E. Lee, B.C. Lee, E.S. Yang, and Y.H. Lee. 2010. Relationship between fertilizer application level and soil chemical properties for strawberry cultivation under greenhouse in Chungnam Province. Korean J. Soil Sci. Fert. 43:153-159.
  5. Choi, M.T., Y.U. Yun, J.I. Lee, J.E. Lee, S.K. Jung, Y.G. Nam, and Y.H. Lee. 2014. Characteristics of fertility of cucumber cultivated soils at controlled horticulture in Chungnam Province. Korean J. Soil Sci. Fert. 47:262-268. https://doi.org/10.7745/KJSSF.2014.47.4.262
  6. Davinic, M., Fultz, L.J., Acosta-Martinez, V., Calderόn, F.J., Cox, S.B., Dowd, S.E., Allen, V.G., Zak, J.C., Moore-Kucera, J., 2012. Pyrosequencing and mid-infrared spectroscopy reveal distinct aggregate stratification of soil bacterial communities and organic matter composition. Soil Biology and Biochemistry 46, 63-72. https://doi.org/10.1016/j.soilbio.2011.11.012
  7. Frostegard, Å., A. Tunlid, and E. Baath. 1993. Phospholipid fatty acid composition, biomass and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Appl. Environ. Microbiol. 59:3605-3617.
  8. Grogan, D.W. and J.E. Cronan. 1997. Cyclopropane ring formation in membrane lipids of bacteria. Microbiol. Mol. Biol. Rev. 61:429-441.
  9. Guckert, J.B., M.A. Hood, and D.C. White. 1986. Phospholipid ester-linked fatty acid profile changes during nutrient deprivation of Vibrio cholerae: increases in cis/trans ratio and proportions of cyclopropyl fatty acid. Appl. Environ. Microbial. 52: 794-801.
  10. Hamel, C., K. Hanson, F. Selles, A.F. Cruz, R. Lemke, B. McConkey, and R. Zentner. 2006. Seasonal and long-term resource-related variations in soil microbial communities in wheat-based rotations of the Canadian prairie. Soil Biol. Biochem. 38:2104-2116. https://doi.org/10.1016/j.soilbio.2006.01.011
  11. Jones, R.T., M.S. Robeson, C.L. Lauber, M. Hamady, R. Knight, and N. Fierer. 2009. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J. 3, 442-453. https://doi.org/10.1038/ismej.2008.127
  12. Kieft, T.L., E. Wilch, K. O'connor, D.B. Ringelberg, and D.C. White. 1997. Survival and phospholipid fatty acid profiles of surface and subsurface bacteria in natural sediment microcosms. Appl. Environ. Microbiol. 63:1531-1542.
  13. Kim, M.K., Y.S. Ok, J.Y. Heo, S.L. Choi, S.D. Lee, H.Y. Shin, J.H. Kim, H.R. Kim, and Y.H. Lee. 2014. Analysis of soil microbial communities formed by different upland fields in Gyeongnam Province. Korean J. Soil Sci. Fert. 47:100-106. https://doi.org/10.7745/KJSSF.2014.47.2.100
  14. Kim E.S. and Y.H. Lee. 2011. Response of soil microbial communities to applications of green manures in paddy at an early rice growing stage. Korean J. Soil Sci. Fert. 44:221-227. https://doi.org/10.7745/KJSSF.2011.44.2.221
  15. Lee, Y.H. and H. Kim. 2011. Response of soil microbial communities to different farming systems for upland soybean cultivation. J. Korean Soc. Appl. Biol. Chem. 54(3):423-433. https://doi.org/10.3839/jksabc.2011.066
  16. Lee, Y.H. and H.D. Yun. 2011. Changes in microbial community of agricultural soils subjected to organic farming system in Korean paddy fields with no-till management. J. Korean Soc. Appl. Biol. Chem. 54(3):434-441. https://doi.org/10.3839/jksabc.2011.067
  17. Lee, Y.H. and S.T. Lee. 2011. Comparison of microbial community of orchard soils in Gyeongnam Province. Korean J. Soil Sci. Fert. 44:492-497. https://doi.org/10.7745/KJSSF.2011.44.3.492
  18. Lee, Y.H. and Y.S. Zhang. 2011. Response of microbe to chemical properties from orchard soil in Gyeongnam Province. Korean J. Soil Sci. Fert. 44:236-241. https://doi.org/10.7745/KJSSF.2011.44.2.236
  19. Lee, Y.H., B.K. Ahn, and Y.K. Sonn. 2011. Effects of electrical conductivity on the soil microbial community in a controled horticultural land for strawberry cultivation. Korean J. Soil Sci. Fert. 44(5):830-835. https://doi.org/10.7745/KJSSF.2011.44.5.830
  20. Macalady, J.L., M.E. Fuller, and K.M. Scow. 1998. Effects of metam sodium fumigation on soil microbial activity and community structure. J. Environ. Qual. 27:54-63.
  21. Mechri, B., H. Chehab, F. Attia, F.B. Mariem, M. Braham, and M. Hammami. 2010. Olive mill wastewater effects on the microbial communities as studied in the field of olive trees by analysis of fatty acid signatures. Eur. J. Soil Biol. 46:312-318. https://doi.org/10.1016/j.ejsobi.2010.06.001
  22. NIAST (National Institute of Agricultural Science and Technology). 2010a. Methods of soil chemical analysis. Suwon, Korea.
  23. Oh, Y.J., S.B. Kang, Y.I. Song, J.H. Choi, and W.K. Paik. 2012. Effects of cover plants on soil microbial community in organic apple orchards. Korean J. Soil Sci. Fert. 45:822-828. https://doi.org/10.7745/KJSSF.2012.45.5.822
  24. Olsson, P.A., R. Francis, D.J. Read, and B. Soderstrom. 1998. Growth of arbuscular mycorrhizal mycelium in calcareous dune sand and its interaction with other soil micro-organisms as estimated by measurement of specific fatty acids. Plant Soil 201:9-16. https://doi.org/10.1023/A:1004379404220
  25. Park, J.H., M.K. Kim, B.J. Lee, H.R. Kim, Y.H. Lee, and Y.S. Cho. 2014. Diversity of soil microbial communities formed by different light penetrations in forests. Korean J. Soil Sci. Fert. 47:496-499. https://doi.org/10.7745/KJSSF.2014.47.6.496
  26. SAS Institute. 2006. SAS Version 9.1.3. SAS Inst., Cary, NC.
  27. Schutter, M.E. and R.P. Dick. 2000. Comparison of fatty acid methyl ester (FAME) methods for characterizing microbial communities. Soil Sci. Soc. Am. J. 64:1659-1668. https://doi.org/10.2136/sssaj2000.6451659x
  28. Zelles, L. 1997. Phospholipid fatty acid profiles in selected members of soil microbial communities. Chemosphere 35:275-294. https://doi.org/10.1016/S0045-6535(97)00155-0

Cited by

  1. Long-term Assessment of Soil Chemical Properties in Different Soil Texture Orchard Fields in Gyeongnam Province vol.48, pp.4, 2015, https://doi.org/10.7745/KJSSF.2015.48.4.240
  2. Long-term Assessment of Chemical Properties from Paddy Soils in Gyeongnam Province vol.49, pp.2, 2016, https://doi.org/10.7745/KJSSF.2016.49.2.132
  3. Effect of Biodegradable Mulch Film on Soil Microbial Community vol.49, pp.2, 2016, https://doi.org/10.7745/KJSSF.2016.49.2.125
  4. Effects of Continuous Application of Green Manures on Microbial Community in Paddy Soil vol.48, pp.5, 2015, https://doi.org/10.7745/KJSSF.2015.48.5.528
  5. Impacts of Soil Organic Matter on Microbial Community of Paddy Soils in Gyeongnam Province vol.49, pp.6, 2016, https://doi.org/10.7745/KJSSF.2016.49.6.783