DOI QR코드

DOI QR Code

Characteristics of Meteorological Variables in the Leeward Side associated with the Downslope Windstorm over the Yeongdong Region

영동지역 지형성 강풍과 관련된 풍하측 기상요소의 특징

  • Cho, Young-Jun (Forecast Research Division, National Institute of Meteorological Research) ;
  • Kwon, Tae-Yong (Department of Atmospheric and Environmental Sciences, Gangneung-Wonju National University) ;
  • Choi, Byoung-Cheol (High-impact Weather Research Center, Forecast Research Division, National Institute of Meteorological Research)
  • 조영준 (국립기상과학원 관측예보연구과) ;
  • 권태영 (강릉원주대학교 대기환경과학과) ;
  • 최병철 (국립기상과학원 관측예보연구과 재해기상연구센터)
  • Received : 2015.03.26
  • Accepted : 2015.07.06
  • Published : 2015.08.30

Abstract

We investigated the characteristics of meteorological conditions related to the strong downslope wind over the leeward side of the Taebaek Mountains during the period 2005~2010. The days showing the strong wind exceeding $14ms^{-1}$ in Gangwon province were selected as study cases. A total of 15 days of strong wind were observed at Sokcho, Gangneung, Donghae, and Taebaek located over the Yeongdong region. Seven cases related to tropical cyclone (3 cases) and heavy snowfall (2 cases) and heavy rainfall (2 cases) over the Yeongdong region were excluded. To investigate the characteristics of the remaining 8 cases, we used synoptic weather chart, Sokcho radiosonde, Gangneung wind profiler and numerical model. The cases showed no precipitation (or ${\leq}1mm\;day^{-1}$). From the surface and upper level weather chart, we found the pressure distribution of southern high and northern low pattern over the Korean peninsula and warm ridge over the Yeongdong region. Inversion layer (or stable layer) and warm ridge with strong wind were located in about 1~3 km (925~700 hPa) over mountains. The Regional Data Assimilation and Prediction System (RDAPS) indicated that warm core and temperature ridge with horizontal temperature gradient were $0.10{\sim}0.23^{\circ}C\;km^{-1}$ which were located on 850 hPa pressure level above mountaintop. These results were summarized as a forecasting guidance of downslope windstorm in the Yeongdong region.

본 연구에서는 2005~2010년 기간 동안 영동지역의 지형성 강풍과 관련된 태백산맥 풍하측에서 관측된 기상요소들을 분석하였다. 강풍 사례는 강원지역에서 풍속이 $14ms^{-1}$ 이상인 조건을 이용하여 선정하였다. 강풍 사례는 총 15일로 나타났고, 모두 영동지역에 위치한 속초, 강릉, 동해, 그리고 태백 지역에서 발생하였다. 사례 중 태풍(세 사례) 그리고 영동지역의 대설(두 사례)과 호우(두 사례)와 관련된 7개 사례는 이 연구에서 제외하였다. 8개 강풍 사례를 분석하기 위하여 종관 일기도, 속초 고층 관측, 강릉 수직측풍, 그리고 수치모델 자료를 사용하였다. 선정된 사례는 무강수 혹은 일강수량 1mm 이하의 강수를 보였다. 종관 일기도에서 나타난 지상과 상층의 특징은 기압분포가 한반도를 중심으로 남고북저형을 보였고, 영동지역으로 온도능(warm ridge)이 위치하였다. 역전층(혹은 안정층)과 온도능은 하층 강풍대와 함께 산 정상의 약 1~3 km (925~700 hPa) 고도에 위치하였다. 또한 지역예보시스템에서 분석된 온난핵과 온도능은 산 정상 상공의 850 hPa 등압면 고도에 위치하였고, 이 고도에서 수평 온도 경도는 $0.10{\sim}0.23^{\circ}C\;km^{-1}$로 분석되었다. 이러한 분석 결과는 영동지역 강풍 예보 가이던스로 요약되었다.

Keywords

References

  1. Brinkmann, W.A.R., 1974, Strong downslope winds at Boulder, Colorado. Monthly Weather Review, 102, 592-602. https://doi.org/10.1175/1520-0493(1974)102<0592:SDWABC>2.0.CO;2
  2. Clark, T.L. and Peltier, W.R., 1984, Critical level reflection and the resonant growth of nonlinear mountain waves. Journal of Atmospheric Science, 41, 3122-3134. https://doi.org/10.1175/1520-0469(1984)041<3122:CLRATR>2.0.CO;2
  3. Colson, D., 1954, Meteorological problems in forecasting mountain waves. Bulletin American Meteorological Society, 35, 363-371.
  4. Durran, D.R., 1986, Another look at downslope windstorms, Part I: The development of analogs to supercritical flow in an infinitely deep, continuously stratified fluid. Journal of Atmospheric Science, 43, 2527-2543. https://doi.org/10.1175/1520-0469(1986)043<2527:ALADWP>2.0.CO;2
  5. Heo, K.-Y., Lee, J.-W., Ha, K.-J., Jun, K.-C., and Park, K.-S., 2008, Model optimization for sea surface wind simulation of strong wind cases. Journal of Korean Earth Science Society, 29(3), 263-279. (in Korean) https://doi.org/10.5467/JKESS.2008.29.3.263
  6. Houghton, D.D. and Kasahara, A., 1968, Nonlinear shallow fluid flow over an isolated ridge. Communications on Pure Applied Mathematics, 21, 1-23. https://doi.org/10.1002/cpa.3160210103
  7. Jang, W. and Chun, H.-Y. 2008, Severe downslope winds of Gangneung in the springtime. Atmosphere, 18(3), 207-224. (in Korean)
  8. Jung, W.-S. and Lee, H.-W., 2003, Numerical experiments on the terrain following strong wind phenomenon effecting to the onset of sea breeze. Journal of Korean Earth Science Society, 24(4), 325-336. (in Korean)
  9. Kim, J.-H. and Chung, I.-U., 2006, Study on mechanisms and orographic effect for the springtime downslope windstorm over the Yeongdong region. Atmosphere, 16(2), 67-83. (in Korean)
  10. Klemp, J.B. and Lilly, D.K., 1975, The dynamic of waveinduced downslope winds. Journal of Atmospheric Science, 32, 320-339. https://doi.org/10.1175/1520-0469(1975)032<0320:TDOWID>2.0.CO;2
  11. Lee, J.-G., 2003, A numerical study of the orographic effect of the Taebaek mountains on the increase of the downslope wind speed near Gangnung area. Journal of Environmental Science International, 12(12), 1245-1254. (in Korean) https://doi.org/10.5322/JES.2003.12.12.1245
  12. Lee, J.-G. and In, S.-R., 2009, A numerical sensitivity experiment of the downslope windstorm over the Yeongdong region in relation to the inversion layer of temperature. Atmosphere, 19(4), 331-344. (in Korean)
  13. Lee, S.-J. and Kim, Y.-C., 2002, A numerical forecast and verification of the aircraft turbulence observed over South Korea. Journal of Korean Meteorological Society, 38(5), 493-507. (in Korean)
  14. Lilly, D.K. and Klemp, J.B., 1979, The effects of terrain shape on nonlinear hydrostatic mountain waves. Journal of Fluid Mechanics, 95, 241-261. https://doi.org/10.1017/S0022112079001452
  15. Long, R.R., 1953, Some aspects of the flow of stratified fluids I, A theoretical investigation. Tellus, 5, 42-58. https://doi.org/10.1111/j.2153-3490.1953.tb01035.x
  16. Miller, P.P. and Durran, D.R., 1991, On the sensitivity of downslope windstorms to the asymmetry of the mountain profile. Journal of Atmospheric Science, 48, 1457-1473. https://doi.org/10.1175/1520-0469(1991)048<1457:OTSODW>2.0.CO;2
  17. Queney, P., Corby, G., Gerbier, N., Koschmieder, H., and Zierep, J., 1960, The airflow over mountains. WMO Technical Note 34, World Meteorological Organization, Geneva, Switzerland, 135 p.