DOI QR코드

DOI QR Code

Estimation of Total Cloud Amount from Skyviewer Image Data

Skyviewer 영상 자료를 이용한 전운량 산출

  • Kim, Bu-Yo (Department of Atmospheric & Environmental Sciences, Gangneung-Wonju National University) ;
  • Jee, Joon-Bum (Weather Information Service Engine, Hankuk University of Foreign Studies) ;
  • Jeong, Myeong-Jae (Department of Atmospheric & Environmental Sciences, Gangneung-Wonju National University) ;
  • Zo, Il-Sung (Research Institute for Radiation-Satellite, Gangneung-Wonju National University) ;
  • Lee, Kyu-Tae (Department of Atmospheric & Environmental Sciences, Gangneung-Wonju National University)
  • 김부요 (강릉원주대학교 대기환경과학과) ;
  • 지준범 (한국외국어대학교 차세대도시농림융합기상사업단) ;
  • 정명재 (강릉원주대학교 대기환경과학과) ;
  • 조일성 (강릉원주대학교 복사-위성연구소) ;
  • 이규태 (강릉원주대학교 대기환경과학과)
  • Received : 2015.05.26
  • Accepted : 2015.07.28
  • Published : 2015.08.30

Abstract

For this study, we developed an algorithm to estimate the total amount of clouds using sky image data from the Skyviewer equipped with CCD camera. Total cloud amount is estimated by removing mask areas of RGB (Red Green Blue) images, classifying images according to frequency distribution of GBR (Green Blue Ratio), and extracting cloud pixels from them by deciding RBR (Red Blue Ratio) threshold. Total cloud amount is also estimated by validity checks after removing sunlight area from those classified cloud pixels. In order to verify the accuracy of the algorithm that estimates total cloud amount, the research analyzed Bias, RMSE, and correlation coefficient compared to records of total cloud amount earned by human observation from the Gangwon Regional Meteorological Administration, which is in the closest vicinity of the observation site. The cases are selected four daily data from 0800 LST to 1700 LST for each season. The results of analysis showed that the Bias in total cloud amount estimated by the Skyviewer was an average of -0.8 tenth, and the RMSE was 1.6 tenths, indicating the difference in total cloud amount within 2 tenths. Also, correlation coefficient was very high, marking an average of over 0.91 in all cases, despite the distance between the two observation sites (about 4 km).

본 연구에서는 CCD 카메라가 장착된 Skyviewer로부터 촬영된 하늘 영상 자료를 이용하여 전운량을 산출하는 알고리즘을 개발하였다. 전운량 산출은 RGB 영상 내의 차폐 영역을 제거하고 GBR 빈도분포에 따른 영상을 분류하며, RBR 경계값을 결정하여 구름 화소를 분류한다. 분류된 구름 화소에서 태양광 영역을 제거한 후 유효성 검사를 통해 전운량을 산출하게 된다. 전운량 산출 알고리즘의 정확성을 검증하기 위하여 관측소와 가장 가까운 강원지방기상청의 목측 전운량 자료와 편이(Bias), 평균제곱근오차(RMSE), 상관계수를 분석하였다. 선정된 사례는 계절별 일 사례로 8시부터 17시까지의 정시 자료를 사용하였다. 분석 결과 Skyviewer로부터 산출된 전운량의 편이는 평균적으로 -0.8할의 차이를 보였으며, 평균제곱근오차는 1.6할로 전운량의 차이가 2할 내에서 나타나고 있었다. 또한, 두 관측소는 떨어진 거리의 차이가 있음(약 4 km)에도 불구하고 상관계수가 모든 사례에서 평균 0.91 이상으로 매우 높았다.

Keywords

References

  1. Cess, R. D., Potter, G. L., Blanchet, J. P., Boer, G. J., Ghan, S. J., Kiehl, J. T., Le Treut, H., Li, Z.-X., Liang, X.-Z., Mitchell, J. F. B., Morcreete, J.-J., Randall, D. A., Riches, M. R., Roechner, E., Schlese, U., Slingo, A., Taylor, K. E., Washington, W. M., Wetherald, R. T., and Yagai, I., 1989, Interpretation of cloud-climate feedback as produced by 14 atmospheric general circulation model. Science, 245, 513-516. https://doi.org/10.1126/science.245.4917.513
  2. Ghonima, M. S., Urquhart, B., Chow, C. W., Shields, J. E., Cazorla, A., and Kleissl, J., 2012, A method for cloud detection and opacity classification based on ground based sky imagery. Atmospheric Measurement Techniques Discussions, 5, 4535-4569. https://doi.org/10.5194/amtd-5-4535-2012
  3. Jee, J. B., Zo, I. S., Lee, K. T., and Choi, Y. J., 2011, Distribution of photovoltaic energy including topography effect. Journal of the Korean Earth Science Society, 32, 190-199. (in Korean) https://doi.org/10.5467/JKESS.2011.32.2.190
  4. Jee, J. B., Kim, Y. D., Lee, W. H., and Lee, K. T., 2010, Temporal and spatial distributions of solar radiation with surface pyranometer data in South Korea. Journal of the Korean Earth Science Society, 31, 720-737. (in Korean) https://doi.org/10.5467/JKESS.2010.31.7.720
  5. Johnson, R. W., and Hering, W. S., 1987, Automated cloud cover measurements with a solid-state imaging system. In Proceedings of the Cloud Impacts on DOD Operations and Systems-1987, Workshop, 59-69.
  6. Kim, Y. H., Koo, H. J., Nam, J. C., and Oh, S. N., 2004, Characteristics of sunshine and cloudiness in Seoul. Asia-Pacific Journal of Atmospheric Sciences, 40, 571-586.
  7. Kim, Y. K., Jang, E. S., and Jin, B. H., 1992, Variation of the atmospheric transmissivity by cloud amount and topographic condition. Journal of the Korean Earth Science Society, 13, 342-354. (in Korean)
  8. Kim, Y. M., Kim J., and Cho, H. K., 2008, Development of objective algorithm for cloudiness using all-sky digital camera. Atmosphere, 18, 1-14. (in Korean)
  9. Lee, B. I., Kim, Y. J., Chung, C. Y., Lee, S. H., and Oh, S. N, 2007, Development of cloud amount calculation algorithm using MTSAT-1R satellite data. Atmosphere, 17, 125-133. (in Korean)
  10. Lee, K. H., Yoo, H. H., and Geoff, J. L., 2010, Generation of typical weather data using the ISO Test Reference Year (TRY) method for major cities of South Korea. Building and Environment, 45, 956-963. (in Korean) https://doi.org/10.1016/j.buildenv.2009.10.002
  11. Lee, K. H., and Cho, H. C., 2012, Analysis and calculation of hourly surface temperature based on typical meteorological data for major cities in Korea. Journal of the Korean Solar Energy Society, 32, 123-128. (in Korean) https://doi.org/10.7836/kses.2012.32.3.123
  12. Leem, H. H., Lee, H. W., and Lee, S. H., 2005, The analysis of the characteristics of the fog generated at the Incheon Int'l Airport. Asia-Pacific Journal of Atmospheric Sciences, 41, 1111-1123.
  13. Long, C., Slater, D., and Tooman, T., 2001, Total Sky Imager (TSI) model 880 status and testing results. ARM-TR-006. http://www.arm.gov/publications/tech_reports/arm-tr-006.pdf (February 28th 2015)
  14. Sutter, M., D. Durr, and Philipona, R., 2004, Comparison of two radiation algorithms for surface-based cloud-free sky detection. Journal of Geophysical Research, 109, D17202. https://doi.org/10.1029/2004JD004582
  15. Shields, J. E., Johnson, R. W., and Koehler, T. L., 1993, Automated whole sky imaging systems for cloud field assessment. Fourth Symposium on Global Change Studies, American Meteorological Society, 228-231.
  16. Shields, J. E., Karr, M. E., Burden, A. R., Johnson, R. W., and Hodgkiss, W. S., 2007a, Continuing support of cloud free line of sight determination including whole sky imaging of clouds. Final report for ONR Contract N00014-01-D-0043 DO #13, Marine Physical Laboratory, Scripps Institution of Oceanography, University of California San Diego, Technical Note 273.
  17. Shields, J. E., Karr, M. E., Burden, A. R., Johnson, R. W., and Hodgkiss, W. S., 2007b, Enhancement of near-realtime cloud analysis and related analytic support for whole sky imagers. Final report for ONR contract N00014-01-D-0043 DO# 4, Marine Physical Laboratory, Scripps Institution of Oceanography, University of California, San Diego, ADA468076.
  18. Shields, J. E., Karr, M. E., Burden, A. R.., Johnson, R. W., Mikuls, V., Streeter, J., and Hodgkiss, W., 2009, Research toward Multi-Site Characterization of Sky Obscuration by Clouds. Final Report for grant N00244-07-1-009, Marine Physical Laboratory, Scripps Institution of Oceanography, University of California San Diego, Technical Note 274.
  19. Shields, J. E., Karr, M. E., Johnson, R. W., and Burden, A. R., 2013, Day/night whole sky imagers for 24-h cloud and sky assessment: history and overview. Applied Optics, 52, 1605-1616. https://doi.org/10.1364/AO.52.001605
  20. Yoo, H. C., Lee, K. H., and Park, S. H., 2008, Analysis of data and calculation of global solar radiation based on cloud data for major cities in Korea. Journal of the Korean Solar Energy Society, 28, 17-24. (in Korean)

Cited by

  1. Estimation of Surface Solar Radiation using Ground-based Remote Sensing Data on the Seoul Metropolitan Area vol.39, pp.3, 2018, https://doi.org/10.5467/JKESS.2018.39.3.228