DOI QR코드

DOI QR Code

A green and direct synthesis of photosensitized CoS2-graphene/TiO2 hybrid with high photocatalytic performance

  • Zhu, Lei (Department of Advanced Materials Science & Engineering, Hanseo University) ;
  • Jo, Sun-Bok (Department of Advanced Materials Science & Engineering, Hanseo University) ;
  • Ye, Shu (Department of Advanced Materials Science & Engineering, Hanseo University) ;
  • Ullah, Kefayat (Department of Advanced Materials Science & Engineering, Hanseo University) ;
  • Meng, Ze-Da (Jiangsu Key Laboratory of Environmental Functional Materials, College of Chemistry and Bioengineering, Suzhou University of Science and Technology) ;
  • Oh, Won-Chun (Department of Advanced Materials Science & Engineering, Hanseo University)
  • Received : 2013.09.01
  • Accepted : 2014.07.13
  • Published : 2015.03.25

Abstract

$CoS_2$, $CoS_2$-raphene and $CoS_2$-raphene/$TiO_2$ composite was synthesized by a facile sonochemical and hydrothermal method. X-ray diffraction, scanning electron microscopy with energy-dispersive X-ray analysis, transmission electron microscopy, FT-IR, UV-is and BET surface area was calculated by nitrogen adsorption were used. The FT-IR results illuminated that $CoS_2$ and $TiO_2$ band transfers electrons to graphene with functional groups attached. UV-is patterns indicated that $CoS_2$-raphene/$TiO_2$ have good photoinduction effects in visible light region. The photocatalytic activity of sample was evaluated by measuring the degradation of organic pollutants such as methylene blue (MB), and industrial dyes such as Texbrite BA-L (TBA) under visible light.

Keywords

References

  1. X. Chen, S.S. Mao, Chem. Rev. 107 (2007) 2891. https://doi.org/10.1021/cr0500535
  2. W.C. Oh, F.J. Zhang, M.L. Chen, Y.M. Lee, W.B. Ko, J. Ind. Eng. Chem. 15 (2009) 190. https://doi.org/10.1016/j.jiec.2008.09.019
  3. O.K. Dalrymple, E. Stefanakos, M.A. Trotz, D.Y. Goswami, Appl. Catal. B: Environ. 98 (2010) 27. https://doi.org/10.1016/j.apcatb.2010.05.001
  4. P. Xu, T. Xu, J. Lu, S.M. Gao, N.S. Hosmane, B.B. Huang, Y. Dai, Y.B. Wang, Energy Environ. Sci. 3 (2010) 1128. https://doi.org/10.1039/c001940m
  5. Z.D. Meng, L. Zhu, W.C. Oh, J. Ind. Eng. Chem. 18 (2012) 2004. https://doi.org/10.1016/j.jiec.2012.05.019
  6. B.L. Abrams, J.P. Wilcoxon, Crit. Rev. Solid State Mater. Sci. 30 (2005) 153-182. https://doi.org/10.1080/10408430500200981
  7. H. Liu, X.N. Dong, X.C. Wang, C.C. Sun, J.Q. Li, Z.F. Zhu, Chem. Eng. J. 230 (2013) 279. https://doi.org/10.1016/j.cej.2013.06.092
  8. T. Ghosh, K.Y. Cho, K. Ullah, V. Nikam, C.Y. Park, Z.D. Meng, W.C. Oh, J. Ind. Eng. Chem. 19 (2013) 797. https://doi.org/10.1016/j.jiec.2012.10.020
  9. J. Du, X. Lai, N. Yang, J. Zha, D. Kisailus, F. Fu, D. Wang, L. Jiang, ACS Nano 5 (2011) 590. https://doi.org/10.1021/nn102767d
  10. J.F.W. Mosselmans, R.A.D. Pattrick, G. van der Laan, J.M. Charnock, D.J. Vaughan, C.M.B. Henderson, C.D. Garner, Phys. Chem. Miner. 22 (1995) 311. https://doi.org/10.1007/BF00202771
  11. L. Wasu, B. Virote, J. Environ. Manage. 127 (2013) 142. https://doi.org/10.1016/j.jenvman.2013.04.029
  12. H. Zhang, G. Chen, D.W. Bahnemann, J. Mater. Chem. 19 (2009) 5089. https://doi.org/10.1039/b821991e
  13. J. Liu, H. Bai, Y. Wang, Z. Liu, X. Zhang, D.D. Sun, Adv. Funct. Mater. 20 (2010) 4175. https://doi.org/10.1002/adfm.201001391
  14. Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Adv. Mater. 22 (2010) 3906. https://doi.org/10.1002/adma.201001068
  15. Z.D. Meng, T. Ghosh, L. Zhu, J.G. Choi, C.Y. Park, W.C. Oh, J. Mater. Chem. 22 (2012) 16127. https://doi.org/10.1039/c2jm32344c
  16. K. Zhou, Y. Zhu, X. Yang, X. Jiang, C. Li, New J. Chem. 35 (2011) 353. https://doi.org/10.1039/C0NJ00623H
  17. P. Cheng, Z. Yang, H. Wang, W. Cheng, M. Chen, W. Shangguan, G. Ding, Int. J. Hydrogen Energy 37 (2012) 2224. https://doi.org/10.1016/j.ijhydene.2011.11.004
  18. M.D. Donohue, G.L. Aranovich, Fluid Phase Equilib. 158-160 (1999) 557. https://doi.org/10.1016/S0378-3812(99)00074-6
  19. H.I. Kim, G.H. Moon, D.M. Satoca, Y. Park, W.Y. Choi, J. Phys. Chem. C 116 (2012) 1535. https://doi.org/10.1021/jp209035e
  20. Q. Folkerts, G.A. Sawatzky, C. Haas, R.A. Groot, F.U. Hillebrecht, J. Phys. C: Solid State Phys. 20 (1987) 4135. https://doi.org/10.1088/0022-3719/20/26/015
  21. C. Hou, Q. Zhang, Y. Li, H. Wang, J. Hazard. Mater. 205-206 (2012) 229. https://doi.org/10.1016/j.jhazmat.2011.12.071
  22. N.R. Khalid, Z. Hong, E. Ahmed, Y. Zhang, H. Chan, M. Ahmad, Appl. Surf. Sci. 258 (2012) 5827. https://doi.org/10.1016/j.apsusc.2012.02.110
  23. L. Zhu, D. Susac, M. Teo, K.C. Wong, P.C. Wong, R.R. Parsons, D. Bizzotto, K.A.R. Mitchell, S.A. Campbell, J. Catal. 258 (2008) 235. https://doi.org/10.1016/j.jcat.2008.06.016
  24. D. Kibanova, M. Sleiman, J. Cervini-Silva, H. Destaillats, J. Hazard. Mater. 211-212 (2012) 233. https://doi.org/10.1016/j.jhazmat.2011.12.008
  25. Q. Xiang, J. Yu, J. Phys. Chem. Lett. 4 (2013) 753. https://doi.org/10.1021/jz302048d
  26. Z.D. Meng, W.C. Oh, Chin. J. Catal. 33 (2012) 1495. https://doi.org/10.1016/S1872-2067(11)60429-4

Cited by

  1. Bubble template synthesis of CdLa2S4 hollow spheres/reduced graphene oxide nanocomposites as efficient and sustainable visible-light driven photocatalysts vol.5, pp.110, 2015, https://doi.org/10.1039/c5ra18014g
  2. Sonochemical Synthesis and Sonocatalysis Performance Behavior of Ag2Se and Ag2Se/TiO2 Nanocomposites vol.52, pp.6, 2015, https://doi.org/10.4191/kcers.2015.52.6.489
  3. Synthesis and Characterization of CdSe/graphene Nanocomposites and their Catalytic Reusability Studies under Visible Light Radiation vol.52, pp.6, 2015, https://doi.org/10.4191/kcers.2015.52.6.502
  4. Sonochemical synthesis of graphene based PbSe nanocomposite as efficient catalytic counter electrode for dye-sensitized solar cell vol.27, pp.2, 2015, https://doi.org/10.1007/s10854-015-3992-1
  5. Novel Bi2S3/TiO2 Heterogeneous Catalyst: Photocatalytic Mechanism for Decolorization of Texbrite Dye and Evaluation of Oxygen Species vol.53, pp.1, 2015, https://doi.org/10.4191/kcers.2016.53.1.56
  6. Influence of operational parameters on the TiO2photocatalytic degradation of Methylene blue vol.32, pp.12, 2016, https://doi.org/10.1080/02670836.2015.1116762
  7. Graphene-supported CoS2 particles: an efficient photocatalyst for selective hydrogenation of nitroaromatics in visible light vol.7, pp.13, 2015, https://doi.org/10.1039/c7cy00356k
  8. A facile strategy towards the encapsulation of TiO2 nanoparticles with Poly(N-vinylcarbazole) through esterification vol.644, pp.1, 2015, https://doi.org/10.1080/15421406.2016.1277478
  9. 2D Transition Metal Dichalcogenides and Graphene-Based Ternary Composites for Photocatalytic Hydrogen Evolution and Pollutants Degradation vol.7, pp.3, 2017, https://doi.org/10.3390/nano7030062
  10. Roles of Two-Dimensional Transition Metal Dichalcogenides as Cocatalysts in Photocatalytic Hydrogen Evolution and Environmental Remediation vol.56, pp.16, 2017, https://doi.org/10.1021/acs.iecr.7b00371
  11. Photocatalytic Performance of CoS2-Graphene-TiO2 Ternary Composites for Reactive Black B (RBB) Degradation vol.54, pp.4, 2015, https://doi.org/10.4191/kcers.2017.54.4.09
  12. Synthesis, photocatalytic, optical, electronic and biological properties of the CoS2-CuS on cellulose nanocomposites as novel nano catalyst by a sonochemical technology vol.29, pp.21, 2015, https://doi.org/10.1007/s10854-018-9969-0
  13. Performance of amorphous CoSx/oxygen vacancies ZnO heterojunction photocatalytic hydrogen evolution vol.30, pp.1, 2015, https://doi.org/10.1007/s10854-018-0287-3
  14. Facile Synthesis and Characterization of CoS2-SiO2/Chitosan: The Photocatalysis in Real Samples, and Antimicrobial Evaluation vol.29, pp.4, 2015, https://doi.org/10.1007/s10904-019-01074-7