DOI QR코드

DOI QR Code

Physico-chemical and electrochemical properties of pitch-based high crystallinity cokes used as electrode material for electric double layer capacitor

  • Park, Mi-Seon (Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Cho, Seho (Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Jeong, Euigyung (The 4th R&D Institute-4, Agency for Defense Development) ;
  • Lee, Young-Seak (Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University)
  • Received : 2014.06.04
  • Accepted : 2014.07.22
  • Published : 2015.05.25

Abstract

The pitch-based high crystallinity cokes are investigated by evaluating its potential as electrode materials for electric double layer capacitors (EDLCs). After activation process, the high crystallinity cokes-based activated carbon (hc-AC) demonstrates great potential for use as an electrode material for EDLCs. The specific capacitance of hc-AC with the carbon to KOH ratio of 1:3 is $276Fg^{-1}$, even with a low specific surface area of $983m^2g^{-1}$. These results are comparable to that of the most commonly used material for EDLCs, MSP 20 ($256Fg^{-1}$), which has a high specific surface area of $1807m^2g^{-1}$.

Keywords

References

  1. E. Frackowiak, F. Beguin, Carbon 39 (2001) 937. https://doi.org/10.1016/S0008-6223(00)00183-4
  2. X. Zenga, D. Wua, R. Fu, H. Lai, Mater. Chem. Phys. 112 (2008) 1074. https://doi.org/10.1016/j.matchemphys.2008.07.038
  3. X.H. Xia, L. Shi, H.B. Liu, L. Yang, Y.D. He, J. Phys. Chem. Solids 73 (2012) 385. https://doi.org/10.1016/j.jpcs.2011.10.028
  4. C. Largeot, C. Portet, J. Chmiola, P.-L. Taberna, Y. Gogotsi, P. Simon, J. Am. Chem. Soc. 130 (2008) 2730. https://doi.org/10.1021/ja7106178
  5. M. Kodama, J. Yamashita, Y. Soneda, H. Hatori, S. Nishimura, K. Kamegawa, Mater. Sci. Eng. B 108 (2004) 156. https://doi.org/10.1016/j.mseb.2003.10.097
  6. E. Frackowiak, Phys. Chem. Chem. Phys. 9 (2007) 1774. https://doi.org/10.1039/b618139m
  7. L. Wei, G. Yushin, Nano Energy 1 (2012) 552. https://doi.org/10.1016/j.nanoen.2012.05.002
  8. K.L. Walton, T.K. Ghosh, D.S. Viswanath, S.K. Loyalka, R.V. Tompson, Prog. Nucl. Energy 73 (2014) 21. https://doi.org/10.1016/j.pnucene.2014.01.005
  9. X. Du, P. Guo, H. Song, X. Chen, Electrochim. Acta 55 (2010) 4812. https://doi.org/10.1016/j.electacta.2010.03.047
  10. J.R. Miller, R.A. Outlaw, B.C. Holloway, Electrochim. Acta 56 (2011) 10443. https://doi.org/10.1016/j.electacta.2011.05.122
  11. E. Jeong, M.-J. Jung, Y.-S. Lee, J. Fluor. Chem. 150 (2013) 98. https://doi.org/10.1016/j.jfluchem.2013.02.017
  12. L. Zhang, H. Liu, M. Wang, Wei Liu, Rare Met. 25 (2006) 51.
  13. B. Fang, L. Binder, J. Power Sources 163 (2006) 616. https://doi.org/10.1016/j.jpowsour.2006.09.014
  14. E. Frackowiak, S. Delpeux, K. Jurewicz, K. Szostak, D. Cazorla-Amoros, F. Beguin, Chem. Phys. Lett. 361 (2002) 35. https://doi.org/10.1016/S0009-2614(02)00684-X
  15. E. Frackowiak, K. Jurewicz, S. Depleux, F. Beguin, J. Power Sources 97 (2001) 822.
  16. A. Tanimura, A. Kovalenko, F. Hirata, Chem. Phys. Lett. 378 (2003) 638. https://doi.org/10.1016/S0009-2614(03)01336-8
  17. H. Wolfgang, K. Erhard, Fuel 74 (1995) 1786. https://doi.org/10.1016/0016-2361(95)80009-7
  18. N.R. Khalili, M. Campbell, G. Sandi, J. Golas, Carbon 38 (2000) 1905. https://doi.org/10.1016/S0008-6223(00)00043-9
  19. A.F. Hassan, A.M. Youssef, P. Priecel, Carbon Lett. 14 (2013) 234. https://doi.org/10.5714/CL.2013.14.4.234
  20. S.W. Won, G. Wu, H. Ma, Q. Liu, Y. Yan, L. Cui, C. Liu, Y.-S. Yun, J. Hazard. Mater. 138 (2006) 370. https://doi.org/10.1016/j.jhazmat.2006.05.060
  21. S.G. Lee, K.H. Park, W.G. Shim, M.S. balathanigaimani, H. Moon, J. Ind. Eng. Chem. 17 (2011) 450. https://doi.org/10.1016/j.jiec.2010.10.025
  22. T. Adinaveen, L.J. Kennedy, J.J. Vijaya, G. Sekaran, J. Ind. Eng. Chem. 19 (2013) 1470. https://doi.org/10.1016/j.jiec.2013.01.010
  23. H.J. Jung, Y.J. Chung, D.W. Cho, Y.S. Lim, K.W. Kim, J. Korean Ceram. Soc. 34 (1997) 963.
  24. M. Wu, Q. Zha, J. Qiu, X. Han, Y. Guo, Z. Li, A. Yuan, X. Sun, Fuel 84 (2005) 1992. https://doi.org/10.1016/j.fuel.2005.03.008
  25. H.-M. Lee, H.-R. Kang, K.-H. An, H.-G. Kim, B.-J. Kim, Carbon Lett. 14 (2013) 180. https://doi.org/10.5714/CL.2013.14.3.180
  26. S. Atul, K. Takashi, T. Akira, Carbon 38 (2000) 1977. https://doi.org/10.1016/S0008-6223(00)00045-2
  27. J.B. Condon, Surface Area and Porosity Determinations by Physisorption: Measurements and Theory, Elsevier, The Netherlands, 2006.
  28. H.-R. Yu, S. Cho, M.-J. Jung, Y.-S. Lee, Microporous Mesoporous Mater. 172 (2013) 131. https://doi.org/10.1016/j.micromeso.2013.01.018
  29. D. Lozano-Castello, M.A. Lillo-Rodenas, D. Cazorla-Amoros, A. Linares-Solano, Carbon 39 (2001) 741. https://doi.org/10.1016/S0008-6223(00)00185-8
  30. X.-Y. Zhao, S.-S. Huang, J.-P. Cao, S.-C. Xi, X.-Y. Wei, J. Kamamoto, T. Takarada, J. Anal. Appl. Pyrolysis 105 (2014) 116. https://doi.org/10.1016/j.jaap.2013.10.010
  31. B. Xu, F. Wu, R. Chen, G. Cao, S. Chen, Y. Yang, J. Power Sources 195 (2010) 2118. https://doi.org/10.1016/j.jpowsour.2009.09.077
  32. G. Lota, B. Grzyb, H. Machnikowska, J. Machnikowski, E. Frackowiak, Chem. Phys. Lett. 404 (2005) 53. https://doi.org/10.1016/j.cplett.2005.01.074
  33. M.-J. Jung, E. Jeong, J.W. Lim, S.I. Lee, Y.-S. Lee, Colloids Surf. A 389 (2011) 274. https://doi.org/10.1016/j.colsurfa.2011.08.013
  34. Y. Li, Z. Li, P.K. Shen, Adv. Mater. 25 (2013) 2474. https://doi.org/10.1002/adma.201205332
  35. C. Lei, F. Markoulidis, Z. Ashitaka, C. Lekakou, Electrochim. Acta 92 (2013) 183. https://doi.org/10.1016/j.electacta.2012.12.092
  36. V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, S. Seal, Prog. Mater. Sci. 56 (2011) 1178. https://doi.org/10.1016/j.pmatsci.2011.03.003
  37. S. Basu, P. Bhattacharyya, Sens. Actuators B 173 (2012) 1.
  38. F.C. Wu, R.L. Tseng, C.C. Hu, C.C. Wang, J. Power Sources 144 (2005) 302. https://doi.org/10.1016/j.jpowsour.2004.12.020
  39. K. Kierzek, E. Frackowiak, G. Lota, G. Gryglewicz, J. Machnikowski, Electrochim. Acta 49 (2004) 515. https://doi.org/10.1016/j.electacta.2003.08.026
  40. K. Torchala, K. Kierzek, J. Machnikowski, Electrochim. Acta 86 (2012) 260. https://doi.org/10.1016/j.electacta.2012.07.062
  41. W.S. Choi, W.G. Shim, D.W. Ryu, M.J. Hwang, H. Moon, Microporous Mesoporous Mater. 155 (2012) 274. https://doi.org/10.1016/j.micromeso.2012.01.006
  42. X.Y. Zhao, S.S. Huang, J.P. Cao, X.Y. Wei, K. Magarisawa, T. Takarada, Fuel Process. Technol. 125 (2014) 251. https://doi.org/10.1016/j.fuproc.2014.04.012
  43. L.K. Ong, A. Kurniawan, A.C. Suwandi, C.X. Lin, X.S. Zhao, S. Ismadji, Prog. Nat. Sci. Mater. Int. 22 (2012) 624. https://doi.org/10.1016/j.pnsc.2012.11.001

Cited by

  1. Determination of halogens and sulfur in pitch from crude oil by plasma-based techniques after microwave-induced combustion vol.30, pp.8, 2015, https://doi.org/10.1039/c5ja00143a
  2. 열처리 온도에 의한 피치계 활성탄소섬유의 기공구조 변화가 전기화학적 특성에 미치는 영향 vol.26, pp.5, 2015, https://doi.org/10.14478/ace.2015.1085
  3. Adsorptive removal of atmospheric pollutants over Pyropia tenera chars vol.19, pp.None, 2015, https://doi.org/10.5714/cl.2016.19.079
  4. Role of surface fluorine in improving the electrochemical properties of Fe/MWCNT electrodes vol.43, pp.None, 2015, https://doi.org/10.1016/j.jiec.2016.07.050
  5. 석유계 바인더 피치의 β-resin이 탄소블럭의 밀도에 미치는 영향 vol.28, pp.4, 2015, https://doi.org/10.14478/ace.2017.1035
  6. Template-free preparation of layer-stacked hierarchical porous carbons from coal tar pitch for high performance all-solid-state supercapacitors vol.5, pp.30, 2015, https://doi.org/10.1039/c7ta02966g
  7. 고밀도 탄소블럭 제조를 위한 코크스와 바인더피치의 젖음성에 미치는 불소화의 영향 vol.29, pp.6, 2018, https://doi.org/10.14478/ace.2018.1080
  8. 열처리 온도에 따른 열분해 연료유 내 휘발유분 및 잔류 중질유분의 구조 분석 vol.30, pp.3, 2015, https://doi.org/10.14478/ace.2019.1010
  9. Hierarchical porous carbon derived from carboxylated coal-tar pitch for electrical double-layer capacitors vol.9, pp.50, 2015, https://doi.org/10.1039/c9ra05329h
  10. Hierarchical porous carbons from carboxylated coal-tar pitch functional poly(acrylic acid) hydrogel networks for supercapacitor electrodes vol.10, pp.2, 2015, https://doi.org/10.1039/c9ra09141f
  11. Pitch‐Based Laminated Carbon Formed by Pressure Driving at Low Temperature as High‐Capacity Anodes for Lithium Energy Storage Systems vol.26, pp.69, 2015, https://doi.org/10.1002/chem.202003493
  12. Preparation of hierarchical porous carbons from a coal tar pitch modified by fluid catalytic cracking oil for a high-performance supercapacitor vol.56, pp.29, 2015, https://doi.org/10.1007/s10853-021-06317-y