DOI QR코드

DOI QR Code

Process Optimization of Ginseng Berry Extract Fermentation by Lactobacillus sp. Strain KYH isolated from Fermented Kimchi and Product Analysis

발효 김치로부터 분리한 Lactobacillus sp. Strain KYH를 이용한 진생베리 추출물 최적 발효 공정 확립 및 생성물의 특성 분석

  • Ha, Yoo-Jin (Dept. of Food and Nutrition, Chungnam National University) ;
  • Yoo, Sun-Kyun (Dept. of Food and Biotechnology, Joongbu University) ;
  • Kim, Mee Ree (Dept. of Food and Nutrition, Chungnam National University)
  • 하유진 (충남대학교 식품영양학과) ;
  • 유선균 (중부대학교 식품생명과학과) ;
  • 김미리 (충남대학교 식품영양학과)
  • Received : 2015.11.12
  • Accepted : 2016.02.12
  • Published : 2016.02.29

Abstract

The pharmacological effects of ginseng berry have been known to improve psychological function, immune activities, cardiovascular conditions, and certain cancers. It is also known that fermentation improves the bioavailability of human beneficial natural materials. Accordingly, we investigated the optimal fermentation conditions of ginseng berry extract with strain isolated from conventional foods. We also analyzed the fermentation product and its antioxidant activity. The bacterium isolated from fermented kimchi was identified as Lactobacillus sp. strain KYH. To optimize the process, fermentation was performed in a 5 L fermenter containing 3 L of ginseng berry extract at 200 rpm for 72 hr. Under optimized conditions, batch and fed-batch fermentations were performed. After fermentation, organic acids, amino acids, sugars, ginsenosides, and antioxidant activity were evaluated. The optimum fermentation conditions were determined as pH 7.0 and a temperature of $30^{\circ}C$, respectively. After fermentation, the amounts and compositions of organic acids, amino acids, sugars, ginsenosides, and antioxidant activity were altered. In comparing the distribution of ginsenosides with that before fermentation, the ginsenoside Re was a major product. However, amounts of ginsenosides Rb1, Rc, and Rd were reduced, whereas amounts of ginsenosides Rh1 and Rh2 increased. Total phenol content increased to 43.8%, whereas flavonoid content decreased to 19.8%. The DPPH radical scavenging activity and total antioxidant activity increased to 27.2 and 19.4%, respectively.

인삼의 열매인 진생베리는 항암, 항염증, 혈당저하 등의 효능이 있는 것으로 보고되어 오고 있다. 진생베리와 같은 약리활성의 물질들은 생체이용률이 높을 때 높은 효능을 보이는 것으로 알려졌다. 발효는 세포내 조직에 결합되어 있던 생리활성 물질들을 유리시키기 때문에 생체이용율(bioavailability)이 높이는 것으로 알려졌다. 따라서 본 연구에서는 김치로부터 적합한 생체친화성 균주를 선발하여 최적의 발효공정을 확립하고, 발효생성물의 영양성분 및 진세노사이드의 변화와 항산화 활성을 연구하였다. 김치로부터 분리된 발효 균주는 16S rDNA 염기서열을 비교하여 Lactobacillus sp. strain KYH로 동정되었다. 최적 발효 공정을 수행한 결과, 최적 발효조건은 온도 $30^{\circ}C$와 pH 7로 결정되었다. 발효는 회분식 및 유 가식 공정으로 수행을 하였다. 회분식 발효에서는 고농도의 진생베리 추출물의 증식속도가 낮아 유가식 배양을 수행하였다. 발효 후 영양성분 및 진세노사이드의 변화와 항산화 특성을 분석한 결과, 유기산은 발효 전 진생베리 추출물의 경우에는 lactic acid 와 acetic acid 등이 주종을 이루고 있는 반면에, 발효 후 진생베리 추출물에는 citric acid 및 oxalic acid 등이 주종을 이루었다. 발효 후에 당의 함량이 감소되었고, 구성 당은 glucose와 fructose가 주종을 이루었다. 진생베리 발효 추출물에는 glutamic acid, glycine, leucine, histidine, arginine과 같은 아미노산들의 함량이 높아졌다. 진세노사이드 Re는 발효에 상관없이 가장 많은 함량을 보였으나, 발효 전 진생베리 추출물에는 발효 후 진생베리 추출물에서 보다 진세노사이드 Rb1, Rc, Rd의 함량이 많았다. 반면에 진생베리 발효 후 추출물에는 진생베리 발효 전 추출물에서 확인되지 않았던 진세노사이드 Rh1와 Rh2가 확인되었다. 총 페놀, 플라보노이드 함량의 변화는 발효 전 후에 변화가 있었는데, 총 페놀량은 43.8% 증가하였고, 플라보노이드 함량은 19.8% 감소 하였다. DPPH 소거능 및 총 항산화 능력은 발효 후에 각 각 27.2%와 19.4% 증가하였다. 따라서 Lactobacillus sp. strain KYH를 이용하여 최적의 조건 하에 발효된 진생베리 추출물의 진세노사이드 등 생리활성 성분 변화와 증대된 항산화 활성을 확인할 수 있었다.

Keywords

References

  1. Amidon GL, Lennernas H, Shah VP, Crison JR (1995) A theoretical basis for a biopharmaceutics drug classification: The correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res 12: 413-420. https://doi.org/10.1023/A:1016212804288
  2. Ando T, Tanaka O, Shibata S (1980) Preparation of anti-lipolytic substance from Panax ginseng. Planta Med 38: 18-23. https://doi.org/10.1055/s-2008-1074832
  3. Attele AS, Wu CS, Yuan JA (1999) Multiple pharmacological effects of ginseng. Biochem Pharmacol 58: 1685-1693. https://doi.org/10.1016/S0006-2952(99)00212-9
  4. Attele AS, Zhou YP, Xie JT, Wu IA, Zhang L, Dey L, Pugh W, Rue PA, Polonsky KS, Yuan CS (2002) Antidiabetic effects of Panax ginseng berry extract and the identification of an effective component. Diabetes 51: 1851-1858. https://doi.org/10.2337/diabetes.51.6.1851
  5. Blois MS (2004) Antioxidant determinations by the use of a stable free radical. Nature 18: 1000.
  6. Brand JG, Bryant BP (1994) Receptor mechanisms for flavour stimuli. Food Qual Prefer 5: 31-40. https://doi.org/10.1016/0950-3293(94)90006-X
  7. Calkins CR, Hodgen JM (2007) A flesh look at meat flavor. Meat Sci 77: 63-80. https://doi.org/10.1016/j.meatsci.2007.04.016
  8. Chen GT, Tang M, Song Y, Lu ZQ, Zhang JQ, Huang HL, Wu LJ, Guo DA (2008) Microbial transformation of ginsenoside Rb1 by Acremonium strictum. Applied Microbial Biotechnol 77: 1345-1350. https://doi.org/10.1007/s00253-007-1258-4
  9. Cheng LG, Na JR, Bang MH, Kim MK, Yang DC (2008) Conversion of major ginsenoside Rb1 to 20(S)-ginsenoside Rg3 by Microbacterium sp. GS514. Phytochemistry 69: 218-224. https://doi.org/10.1016/j.phytochem.2007.06.035
  10. Chi H, Ji GE (2005) Transformation of ginsenosides Rb1 and Re from Panax ginseng by food microorganisms. Biotechnology Letters 27: 765-771. https://doi.org/10.1007/s10529-005-5632-y
  11. Choi KT (2008) Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng CA Meyer. Acta Pharmacol Sinica 29: 1109-1118. https://doi.org/10.1111/j.1745-7254.2008.00869.x
  12. Corthout J, Naessens T, Apers S, Vlietinck AJ (1999) Quantitative determination of ginsenosides from Panax ginseng roots and ginseng preparations by thin layer chromatography densitometry. J Pharm Biomed Anal 21: 187-192. https://doi.org/10.1016/S0731-7085(99)00109-0
  13. Dewanto V, Wu X, Adom KK, Liu RH (2002) Thermal processing enhances the nutritional values of tomatoes by increasing total antioxidant activity. J Agri Food Chem 50: 3010-3014. https://doi.org/10.1021/jf0115589
  14. Dey L, Xie JT, Wang A, Wu J, Maleckar SA, Yuan C (2003) Antihyperglycemic effects of ginseng: Comparison between root and berry. Phytomedicince 10: 600-605. https://doi.org/10.1078/094471103322331908
  15. Huang YC, Chen CT, Chen SC, Laing PH, Chang Y, Yu LC, Sung HW (2005) A natural compound (ginsenoside Re) isolated from Panax ginseng as a novel angiogenic agent for tissue regeneration. Pharmaceutical Research 22: 636-645. https://doi.org/10.1007/s11095-005-2500-3
  16. Hubert J, Berger M, Nepveu F, Paul F, Dayde J (2008) Effects of fermentation on the phytochemical composition and antioxidant properties of soy germ. Food Chem 109: 709-721. https://doi.org/10.1016/j.foodchem.2007.12.081
  17. Jeon JM, Choi SK, Kim YJ, Jang SJ, Cheon JW, Lee HS (2011) Antioxidant and antiaging effect of ginseng berry extract fermented by lactic acid bacteria. J Soc Cosmet 37: 75-81.
  18. Kang BH, Lee KJ, Hur SS, Lee DS, Lee SH, Shin KS, Lee JM (2013) Ginsenoside derivatives and quality characteristics of fermented ginseng using lactic acid bacteria. Korean J Food Preserv 20: 578-582.
  19. Katina K, Liukkonen KH, Kaukovirta-Norja A, Adlercreutz H, Heinonen SM, Lampi AM (2007) Fermentation induced changes in the nutritional value of native or germinated rye. J Cereal Sci 46: 348-355. https://doi.org/10.1016/j.jcs.2007.07.006
  20. Kim EY, Baik IH, Kim JH, Kim SR, Rhyu MR (2004) Screening of the antioxidant activity of some medicinal plants. Kor J Sci Technol 36: 333-338.
  21. Kim HB, Lim KH, Kang CW, Kim BS, Roh YS, Kwon J, Kim S, Ejaz S, Kim JH (2011) Influence of ginsenoside-Re against myocardial infarction in isolated heart. Mol Cell Toxicol 7: 15-24. https://doi.org/10.1007/s13273-011-0003-3
  22. Kim SJ, Kim JD, Ko SK (2013) Changes in ginsenoside composition of ginseng berry extracts after a microwave and vinegar process. J Ginseng Res 37: 269-272. https://doi.org/10.5142/jgr.2013.37.269
  23. Kim ST, Kim HJ, Jang SK, Lee DI, Joo SS (2013) Establishment of optimal fermentation conditions for steam dried ginseng berry via friendly bacteria and its antioxidant activities. J Food Sci 45: 77-83.
  24. Lee AR, Park JH (2015) Antioxidant and hepatoprotective effects of hydroponic cultured ginseng folium by fermentation. Kor J Herbol 30: 101-108. https://doi.org/10.6116/kjh.2015.30.4.101.
  25. Lee BH, You HJ, Park MS, Kwon B, Ji GE (2006) Transformation of the glycosides from food materials by probiotics and food microorganisms. J Microbiol Biotechnol 16: 497-504.
  26. Lee JS, Kim GN, Jang HD (2008) Effect of red ginseng extract on storage and antioxidant activity of tofu. J Korean Soc Food Sci Nutr 37: 1497-1506. https://doi.org/10.3746/jkfn.2008.37.11.1497
  27. Lee KS, Seong BJ, Kim KH, Kim SI, Han SH, Kim HH, Baik ND (2010) Ginsenoside, phenolic acid composition and physiological significances of fermented ginseng leaf. J Kor Soc Food Sci Nutr 39: 1194-1200. https://doi.org/10.3746/jkfn.2010.39.8.1194
  28. Lee KW, Jung SY, Choi SM, Yang EJ (2012) Effects of ginsenoside Re on LPS-induced inflammatory mediators in BV2 microglial cells. BMC Complementary and Alternative Medicine 12: 196-203. https://doi.org/10.1186/1472-6882-12-S1-P196
  29. Lee SY, Kim YK, Park NI, Kim CS, Lee CY, Park SU (2010) Chemical constituents and biological activities of the berry of Panax ginseng. J Med Plant Res 4: 349-353.
  30. Lee YJ, Jin YR, Urn WC, Ji SM, Cho JY, Ban JJ, Lee SK (2003) Ginsenoside Rc and Re stimulate c-Fos expression in MCF-7 human breast carcinoma cells. Arch Pharm Res 26: 53-57. https://doi.org/10.1007/BF03179932
  31. Lim KH, Lim DJ, Kim JH (2013) Ginsenoside Re ameliorates ischemia and reperfusion injury in the heart: A hemodynamics approach. J Ginseng Res 37: 283-292. https://doi.org/10.5142/jgr.2013.37.283
  32. Liyana PCM, Shahidi F (2006) Importance of insoluble bound phenolics to antioxidant properties of wheat. J Agri food Chem 54: 1256-1264. https://doi.org/10.1021/jf052556h
  33. Miller NJ, Davis MJ, Copinaththan V, Milner A (1993) A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clinical Science 26: 265-277.
  34. Park EY, Kim HJ, Kim YK, Park SU, Choi JE, Cha JY, Jun HS (2012) Increase in insulin secretion induced by Panax ginseng berry extracts contributes to the amelioration of hyperglycemia in streptozotocin induced diabetic mice. J Ginseng Res 36: 153-160. https://doi.org/10.5142/jgr.2012.36.2.153
  35. Park YS, Jang HG (2003) Evaluation of physiological activity and lactic acid fermentation of Rubus Coreanus Miq. J Kor Soc Agric Chem Biotechnol 46: 367.
  36. Pitchumoni SS, Doraiswamy PM (1998) Current status of antioxidant therapy for Alzheimer's disease. J Am Geriatr Soc 46: 1566-1572. https://doi.org/10.1111/j.1532-5415.1998.tb01544.x
  37. Qi LW, Wang CZ, Yuan CS (2011) Ginsenosides from American ginseng: Chemical and pharmacological diversity. Phytochemistry 72: 689-99. https://doi.org/10.1016/j.phytochem.2011.02.012
  38. Quan LH, Min JW, Sathiyamoorthy S, Yang DU, Kim YJ, Yang DC (2012) Biotransformation of ginsenosides Re and Rg1 into ginsenosides Rg2 and Rh1 by recombinant glucosidase. Biotechnol Lett 34: 913-917. https://doi.org/10.1007/s10529-012-0849-z
  39. Rajan KN, Rajendan AD (2009) Effect of fermentation parameters on extra cellular tannase production by Lactobacillus plantarum MTCC 1407. E J Chemistry 6: 979. https://doi.org/10.1155/2009/505087
  40. Saleh ES, Hameed A (2008) Total phenolic contents and free radical scavenging of certain Egyptian ficus species leaf samples. Food Chem 114: 1271-1277.
  41. Shin JH, Yoo SK (2012) Antioxidant properties in microbial fermentation products of Lonicera japonica Thunb extract. J East Asian Soc Dietary Life 22: 98-102.
  42. Sritularak B, Morinaga O, Yuan CS, Shoyama Y, Tanaka H (2009) Quantitative analysis of ginsenosides Rb1, Rg1, and Re in American ginseng berry and flower samples by ELISA using monoclonal antibodies. J Nat Med 63: 360-363. https://doi.org/10.1007/s11418-009-0332-x
  43. Thomson JD, Higgins DG, Gibson TJ (1994) Crustal improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  44. Wang CZ, Wu JA, McEntee A, Yuan CA (2006) Saponins composition in American ginseng leaf and berry assayed by high performance liquid chromatography. J Agric Food Chem 54: 2261-2266. https://doi.org/10.1021/jf052993w
  45. Wang CZ, Yuan CS (2008) Potential role of ginseng in the treatment of colorectal cancer. Am J Chin Med 36: 1019-1028. https://doi.org/10.1142/S0192415X08006545
  46. Wang CZ, Zhang B, Song WX, Ni M, Luo X, Aung HH, Xie JT, Robin T, Tong CH, Yuan CH (2006) Steamed American ginseng berry: Ginsenoside analyses and anticancer activities. J Agric Food Chem 54: 9936-9942. https://doi.org/10.1021/jf062467k
  47. Wang DIC, Cooney CL, Demain AL, Dunnill P, Humphrey AE, Lilly MD (1979) Fermentation and Enzyme Technology. John Wiley & Sons. USA. 6: 87-90.
  48. Xie JT, Du GJ, McEntee E, Aung HH, He H, Mehendale SR, Wang CZ, Yuan CS (2011) Effects of triterpenoid glycosides from fresh ginseng berry on SW480 human colorectal cancer cell line. Cancer Res Treat 43: 49-55. https://doi.org/10.4143/crt.2011.43.1.49
  49. Xie JT, Wang CZ, Ni M, Wu JA, Mehendale SR, Aung HH, Foo A, Yuan CS (2007) American ginseng berry juice intake reduces blood glucose and body weight in ob/ob mice. J Food Sci 72: 590-594. https://doi.org/10.1111/j.1750-3841.2007.00481.x

Cited by

  1. 고려인삼 열매채취시기에 따른 열매형질 및 진세노사이드 함량 변화 vol.26, pp.3, 2016, https://doi.org/10.7783/kjmcs.2018.26.3.214
  2. 꼬리진달래 발효추출물의 이화학적 특성 및 생리활성 연구 vol.28, pp.8, 2016, https://doi.org/10.5352/jls.2018.28.8.938
  3. Antioxidant properties of Angelica dahurica extracts fermented by probiotics strains isolated from gimchi vol.35, pp.4, 2018, https://doi.org/10.12925/jkocs.2018.35.4.1276