DOI QR코드

DOI QR Code

Projections of High Resolution Climate Changes for South Korea Using Multiple-Regional Climate Models Based on Four RCP Scenarios. Part 1: Surface Air Temperature

  • Suh, Myoung-Seok (Department of Atmospheric Sciences, Kongju National University) ;
  • Oh, Seok-Geun (Department of Atmospheric Sciences, Kongju National University) ;
  • Lee, Young-Suk (Department of Atmospheric Sciences, Kongju National University) ;
  • Ahn, Joong-Bae (Department of Atmospheric Sciences, Pusan National University) ;
  • Cha, Dong-Hyun (School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology) ;
  • Lee, Dong-Kyou (School of Earth and Environmental Sciences, Seoul National University) ;
  • Hong, Song-You (Korea Institute of Atmospheric Prediction Systems) ;
  • Min, Seung-Ki (School of Environmental Science and Engineering, Pohang University of Science and Technology) ;
  • Park, Seong-Chan (Korea Meteorological Administration) ;
  • Kang, Hyun-Suk (National Institute of Meteorological Sciences)
  • Received : 2015.10.30
  • Accepted : 2016.04.12
  • Published : 2016.05.31

Abstract

We projected surface air temperature changes over South Korea during the mid (2026-2050) and late (2076-2100) 21st century against the current climate (1981-2005) using the simulation results from five regional climate models (RCMs) driven by Hadley Centre Global Environmental Model, version 2, coupled with the Atmosphere-Ocean (HadGEM2-AO), and two ensemble methods (equal weighted averaging, weighted averaging based on Taylor's skill score) under four Representative Concentration Pathways (RCP) scenarios. In general, the five RCM ensembles captured the spatial and seasonal variations, and probability distribution of temperature over South Korea reasonably compared to observation. They particularly showed a good performance in simulating annual temperature range compared to HadGEM2-AO. In future simulation, the temperature over South Korea will increase significantly for all scenarios and seasons. Stronger warming trends are projected in the late 21st century than in the mid-21st century, in particular under RCP8.5. The five RCM ensembles projected that temperature changes for the mid/late 21st century relative to the current climate are $+1.54^{\circ}C/+1.92^{\circ}C$ for RCP2.6, $+1.68^{\circ}C/+2.91^{\circ}C$ for RCP4.5, $+1.17^{\circ}C/+3.11^{\circ}C$ for RCP6.0, and $+1.75^{\circ}C/+4.73^{\circ}C$ for RCP8.5. Compared to the temperature projection of HadGEM2-AO, the five RCM ensembles projected smaller increases in temperature for all RCP scenarios and seasons. The inter-RCM spread is proportional to the simulation period (i.e., larger in the late-21st than mid-21st century) and significantly greater (about four times) in winter than summer for all RCP scenarios. Therefore, the modeled predictions of temperature increases during the late 21st century, particularly for winter temperatures, should be used with caution.

Keywords

Acknowledgement

Supported by : Korea Meteorological Administration

References

  1. Ali, S., D. Li, F. Congbin, and Y. Yang, 2015: Performance of convective parameterization schemes in Asia using RegCM: Simulation in three typical regions for the period 1998-2002. Adv. Atmos. Sci., 5, 715-730.
  2. Baek, H. J, and Coauthors, 2013: Climate change in the 21st century simulated by HadGEM2-AO under representative concentration pathways. Asia-Pac. J. Atmos. Sci., 49(5), 603-618, doi:10.1007/s13143-013-0053-7.
  3. Boo, K. O., W. T. Kwon, and H. J. Baek, 2006: Change of extreme events of temperature and precipitation over Korea using regional projection of future climate change. Geophy. Res. Lett., 33(1), L01701, doi:10.1029/2005GL023378.
  4. Cha, D. H., and D. K. Lee, 2009: Reduction of systematic errors in regional climate simulations of the summer monsoon over East Asia and the western North Pacific by applying the spectral nudging technique. J. Geophys. Res., 114, D14108, doi:10.1029/2008JD011176.
  5. Cha, D. H., and D. K. Lee, and S. Y. Hong, 2008: Impact of boundary layer processes on seasonal simulation of the East Asian summer monsoon using a regional climate model. Meteorol. Atmos. Phys., 100, 53-72. https://doi.org/10.1007/s00703-008-0295-6
  6. Christensen, J. H., E. Kjellstrom, F. Giorgi, G. Lenderink, and M. Rummukainen, 2010: Weight assignment in regional climate models. Clim. Res., 44, 179-194. https://doi.org/10.3354/cr00916
  7. Evans, J. P., F. Ji, G. Abramowitz, and M. Ekstrom, 2013: Optimally choosing small ensemble members to produce robust climate simulations. Environ. Res. Lett., 8, 044-050.
  8. Fu, C., S. Wang, Z. Xiong, W. Gutowski, D. K. Lee, J. L. Mc-Gregor, Y. Sato, H. Kato, J.-W. Kim, and M.-S. Suh, 2005: Regional climate model intercomparison project for Asia. Bull. Amer. Meteor. Soc., 77, 437-471.
  9. Giorgi, F., 1990: Simulation of regional climate using a limited area model nested in a general circulation model. J. Climate, 3, 941-963. https://doi.org/10.1175/1520-0442(1990)003<0941:SORCUA>2.0.CO;2
  10. Giorgi, F., E. Coppola, F. Raffaele, G. T. Diro, R. Fuentes-Franco, G. Giuliani, A. Mamgain, M. P. Liopart, L Mariotti, and C. Torma, 2014: Changes in extremes and hydroclimatic regimes in the CREMA ensemble projection. Climatic Change, 125, 39-51. https://doi.org/10.1007/s10584-014-1117-0
  11. Giorgi, F., E. Coppola, F. Solmon, L. Mariotti, and others, 2012: RegCM4: model description and preliminary test over multi CORDEX domains. Clim. Res., 52, 7-29. https://doi.org/10.3354/cr01018
  12. Giorgi, F., B. Hewitson, J. Christensen, M. Hulme, H. Von Storch, P. Whetton, R. Jones, L. Mearns, and C. Fu, 2001: Regional Climate Information: Evaluation and Projections (Chapter 10). In Climate Change 2001: The Scientific Basis, Contribution of Working 32 Group I to the Third Assessment Report of the IPCC, Cambridge University Press, 739-768.
  13. Grell, G. A., J. Dudhia, and D. R. Stauffer, 1994: Description of the fifth generation Penn State/NCAR mososcale model (MM5). Tech. Rep. TN-398+STR, NCAR, Boulder, Colorado, 121 p.
  14. Hewitt, H. T., D. Copsey, I. D. Culverwell, C. M. Harris, R. S. R. Hill, A. B. Keen, A. J. McLaren, and E. C. Hunke, 2010: Design and implementation of the infrastructure of HadGEM3: the next-generation Met Office climate modeling system. Geosci. Model Dev. Discuss., 3, 1861-1937. https://doi.org/10.5194/gmdd-3-1861-2010
  15. Ho, C. H., J. Y. Lee, M. H. Ahn, and H. S. Lee, 2003: A sudden change in summer rainfall characteristics in Korea during the late 1970s. Int. J. Climatol., 23, 117-128. https://doi.org/10.1002/joc.864
  16. Hong, J. Y., and J. B. Ahn, 2015: Changes of early summer precipitation in the Korean Peninsula and nearby regions based on RCP simulations. J. Climate, 28, 3557-3578. https://doi.org/10.1175/JCLI-D-14-00504.1
  17. Hong, S. Y., and E. C. Chang, 2012: Spectral nudging sensitivity experiments in a regional climate model. Asia-Pac. J. Atmos. Sci., 48, 345-355. https://doi.org/10.1007/s13143-012-0033-3
  18. Hong, S. Y., H. Park, H. B. Cheong, J. E. E. Kim, M. S. Koo, J. Jang, S. Ham, S. O. Hwang, B. K. Park, E. C. Chang, and H. Li, 2013: The global/regional integrated model system (GRIMs). Asia-Pac. J. Atmos. Sci., 49, 219-243. https://doi.org/10.1007/s13143-013-0023-0
  19. Im, E. S., J. B. Ahn, and W. T. Kwon, 2007: Multi-decadal scenario simulation over Korea using a one-way double -nested regional climate model system. Part 2: future climate projection (2021-2050). Clim. Dynam., 20, 239-254.
  20. Imbert, A. and R. Benestad, 2005: An improvement of analog model strategy for more reliable local climate change scenarios. Theor. Appl. Climatol., 82, 245-255. https://doi.org/10.1007/s00704-005-0133-4
  21. IPCC, 2007: Synthesis report. Contribution of working groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Climate Change, Geneva, 104 p.
  22. IPCC, 2012: Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and II of the Intergovernmental Panel on Climate Change. Cambridge University Press, 582 pp.
  23. IPCC, 2014: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Climate Change 2013, Cambridge University Press, 1535 p.
  24. Jacob, D., and Coauthors, 2007: An inter-comparison of regional climate models for Europe: model performance in present-day climate. Climatic Change, 81, 31-52. https://doi.org/10.1007/s10584-006-9213-4
  25. Kalognomou, E. A., and Coauthors, 2013: A diagnostic evaluation of precipitation in CORDEX Models over Southern Africa. J. Climate, 26, 9477-9506. https://doi.org/10.1175/JCLI-D-12-00703.1
  26. Kang, H. S., and S. Y. Hong, 2008: Sensitivity of the simulated East Asian summer monsoon climatology to four convective parameterization schemes. J. Geophys. Res., 113, D15119, doi:10.1029/2007JD009692.
  27. Kendon, E. J, R. G., Jones, E. Kjellstrom, and J. M. Murphy, 2010: Using and designing GCM-RCM ensemble regional climate projection. J. Climate, 23, 6485-6503. https://doi.org/10.1175/2010JCLI3502.1
  28. Kharin, V. V., F. W. Zwiers, X. Zhang, and M. Wehner, 2012: Changes in temperature and precipitation extremes in the CMIP5 ensemble. Clim., Change, doi:10.1007/s10584-013-0705-8.
  29. Kim, C. S., M. S. Suh, and K. O. Hong, 2009: Bayesian change point analysis of the annual maximum of daily and sub-daily precipitation over South Korea. J. Climate, 22, 6741-6757. https://doi.org/10.1175/2009JCLI2800.1
  30. Kimoto, M., 2005: Simulated change of the East Asian circulation under the global warming scenario. Geophys. Res. Lett., 32, L16701, doi: 10.1029/2005GL023383.
  31. KMA, 2014: Korean climate change assessment report 2014. Korea Meteorological Administration, 153 pp.
  32. Knutti, R., and J. Sedlacek, 2012: Robustness and uncertainties in the new CMIP5 climate model projections, Nat. Clim. Change, 3, 369-373. https://doi.org/10.1038/nclimate1716
  33. Lee, D. K., and M. S. Suh, 2000: Ten-year East Asian summer monsoon simulation using a regional climate model (RegCM2). J. Geophys. Res., 105, 29565-29577. https://doi.org/10.1029/2000JD900438
  34. Lee, D. K., D. H. Cha, and S. J. Choi, 2005: A sensitivity study of regional climate simulation to convective parameterization schemes for 1998 East Asian summer monsoon. J. Terres. Atmos. Ocea. Sci., 16, 989-1015. https://doi.org/10.3319/TAO.2005.16.5.989(RCS)
  35. Lee, D. K., D. H. Cha, and H. S. Kang, 2004: Regional climate simulation for the 1998 summer flood over East Asia. J. Meteor. Soc. Japan, 82, 1735-1753. https://doi.org/10.2151/jmsj.82.1735
  36. Lee, J. W., S. Y. Hong, E. C. Chang, M. S. Suh, and H. S. Kang, 2014: Assessment of future climate change over East Asia due to the RCP scenarios downscaled by GRIMs-RMP. Clim. Dynam., 42, 733-747. https://doi.org/10.1007/s00382-013-1841-6
  37. Li, Q., and Coauthors, 2016: Building Asian climate change scenario by multi-regional climate models ensemble. Part II: mean precipitation. Int. J. Clmatol., doi:10.1002/joc.4633.
  38. Meehl, G. A., G. J. Boer, C. Covey, M. Latif, and R. J. Stouffer, 2000: The coupled model intercomparison project (CMIP). Bull. Amer. Meteor. Soc., 81, 313-318. https://doi.org/10.1175/1520-0477(2000)081<0313:TCMIPC>2.3.CO;2
  39. Min, S. K., S. Legutke, A. Hense, U. Cubasch, W. T. Kwon, J. H. Oh, and U. Schlese, 2006: East Asian climate change in the 21st century as simulated by the coupled climate model ECHO-G under IPCC SRES scenarios. J. Meteor. Soc. Japan, 84, 1-26. https://doi.org/10.2151/jmsj.84.1
  40. Min, S. K., and coauthors, 2015: Changes in weather and climate extremes over Korea and possible cause: A review. Asia-Pac. J. Atmos. Sci., 51, 103-121. https://doi.org/10.1007/s13143-015-0066-5
  41. Moss R, and coauthors, 2008: Towards new scenarios for analysis of emissions, climate change, impacts, and response strategies, Technical Summary. Intergovernmental Panel on Climate Change, Geneva, 25 pp.
  42. Oh, J. H., T. Kim, M. K. Kim, S. H. lee, S. K. Min, and W. T. Kwon, 2004: Regional climate simulation for Korea using dynamic downscaling and statistical adjustment. J. Meteor. Soc. Japan, 82, 1629-1643. https://doi.org/10.2151/jmsj.82.1629
  43. Oh, S. G., and M. S. Suh, 2016: Comparison of projection Skills of deterministic ensemble methods using pseudo-simulation data generated from multivariate Gaussian distribution. Theor. Appl. Climatol., doi: 10.1007/s00704-016-1782-1.
  44. Oh, S. G., J. H. Park, S. H. Lee, and M. S. Suh, 2014: Assessment of the RegCM4 over East Asia and future precipitation change adapted to the RCP scenarios. J. Geophys. Res. Atmos., 119, 2913-2927. https://doi.org/10.1002/2013JD020693
  45. Oh, S. G., M. S. Suh, Y. S. Lee, J. B. Ahn, D. H. Cha, D. K. Lee, S. Y. Hong, S. K. Min, S. C. Park, and H. S. Kang, 2015: Projection of high resolution climate changes for South Korea using multiple-regional climate models based on four RCP scenarios. Part 2: Precipitation. Asia-Pac. J. Atmos. Sci., 52, doi:10.1007/s13143-016-0018-8.
  46. Pal, J. S., and Coauthors, 2007: Regional climate modeling for the developing world: The ICTP RegCM3 and RegCNET. Bull. Amer. meteor. Soc., 88, 1395-1409. https://doi.org/10.1175/BAMS-88-9-1395
  47. Palmer, T. N., and Coauthors, 2004: Development of a European multimodel ensemble system for seasonal to interannual prediction (DEMETER). Bull. Amer. Meteor. Soc., 85, 853-872. https://doi.org/10.1175/BAMS-85-6-853
  48. Park, C., S. K. Min, D. Lee, D. H. Cha, and M. S., Suh, 2015: Evaluation of multiple regional climate models for summer climate extremes over East Asia. Clim. Dynam., 46, 2469-2486.
  49. Park, J.-H., S.-G. Oh, and M.-S. Suh, 2013: Impacts of boundary conditions on the precipitation simulation of RegCM4 in the CORDEX East Asia domain. J. Geophys. Res., 118, 1652-1667.
  50. Peng, P., A, Kumar, A.H., van den Dool, and A. G., Barnston, 2002: An analysis of multi-model ensemble predictions for seasonal climate anomalies. J. Geophys. Res., 107, doi:10.1029/2002JD002712.
  51. Seo, K. H., J. Ok, and J. H. Son, 2013: Assessing future change in the East Asian summer monsoon using CMIP5 coupled models. J. Climate, 26, 7662-7675. https://doi.org/10.1175/JCLI-D-12-00694.1
  52. Sillmann, J., V. V. Kharin, X. Zhang, and F. W. Zwiers, 2013: Climate extreme indices in the CMIP multimodel ensemble: Part 1. Model evaluation in the present climate. J. Geophys. Res. Atmos., 118, 1716-1733. https://doi.org/10.1002/jgrd.50203
  53. Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Note. NCAR/TN-468+STR, National Center for Atmospheric Research, Boulder, CO, 100 pp.
  54. Sperber, K.-R., H. Annamalai, I.-S. Kang, A. Kitoh, A. Moise, A. Turner, B. Wang, and T. Zhou, 2013: The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century, Clim. Dynam., 41, 2711-2744. https://doi.org/10.1007/s00382-012-1607-6
  55. Suh, M. S., and D. K. Lee, 2004: Impacts of land use/cover changes on surface climate over east Asia for extreme climate cases using RegCM2. J. Geophys. Res., 109, D02108, doi:10.1029/2003JD003681.
  56. Suh, M. S., S. G. Oh, D. K. Lee, D. H. Cha, S. J. Choi, C. S. Jin, and S. Y. Hong, 2012: Development of new ensemble methods based on the performance skills of regional climate models over South Korea. J. Climate, 25, 7067-7082. https://doi.org/10.1175/JCLI-D-11-00457.1
  57. Sung, J. H., H. S. Kang, S. H. Park, C. H. Cho, D. H. Bae, and Y. O. Kim, 2012: Projection of extreme precipitation at the end of 21st century over South Korea based on representative concentration pathways (RCP), Atmosphere, 22, 221-231 (in Korean with English abstract). https://doi.org/10.14191/Atmos.2012.22.2.221
  58. Tang, J. P., and Coauthors, 2016: Building Asian climate change scenario by multi-regional climate models ensemble. Part I: surface air temperature. Int. J. Climatol., doi: 10.1002/joc.4628.
  59. Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 7183-7192. https://doi.org/10.1029/2000JD900719
  60. Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An Overview of CMIP5 and the Experiment Design. Bull. Am. Meteor. Soc., 93, 485-498. https://doi.org/10.1175/BAMS-D-11-00094.1
  61. van der Linden, P., and J. F. Mitchell, 2009: ENSEMBLES: Climate change and its impacts: Summary of research and results from the ENSEMBLES project. Met Office Hadley Centre Tech. Rep., 160 pp.
  62. van Vuuren D. P., J. Edmonds, M. Kainuma, K. Riahi, A. Thomon, K. Hibbard, G. C. Hurtt, T. Kram, V. Krey, J. F. Lamarque, T. Masui, M Meinshausen, N. Nakicenovic, S. J. Smith, and S. K. Rose, 2011: The representative concentration pathways: an overview. Climatic Change, 109, 5-31. https://doi.org/10.1007/s10584-011-0148-z
  63. von Storch, H., H. Langerberg, and F. Feser, 2000: A spectral nudging technique for dynamical downscaling purposes. Mon. Wea. Rev., 128, 3664-3673. https://doi.org/10.1175/1520-0493(2000)128<3664:ASNTFD>2.0.CO;2
  64. Wang, S.-Y., R. R. Gillies, E. S. Takle, and W. J. Gutowski Jr., 2009: Evaluation of precipitation in the inter-mountain region as simulated by NARCCAP regional climate models. Geophys. Res. Lett., 36, L11704, doi:10.1029/2009GL037930.
  65. Weigel, A.P., R. Knutti, M.A. Liniger, and C. Appenzeller, 2010: Risks of model weighting in multimodel climate projections. J. Climate, 23, 4175-4191. https://doi.org/10.1175/2010JCLI3594.1
  66. Xin, X., Z. Li, J. Zhang, T. Wu, and Y. J. Fang, 2013: Climate change projections over East Asia with BCC_CSM1.1 climate model under RCP scenarios. J. Meteor. Soc. Japan, 91, 413-429. https://doi.org/10.2151/jmsj.2013-401
  67. Xu, Z., and Z. L. Yang, 2012: An improved dynamical downscaling method with GCM bias corrections and its validation with 30 years of climate simulations. J. Climate, 25, 6271-6286. https://doi.org/10.1175/JCLI-D-12-00005.1
  68. Yatagai, A., K. Kamiguchi, O. Arakawa, A. Hamada, N. Yasutomi, and A. Kitoh, 2012: APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull. Amer. Meteor. Soc., 93, 1401-1415. https://doi.org/10.1175/BAMS-D-11-00122.1
  69. Yhang Y. B., and S.-Y. Hong, 2008: Improved physical processes in a regional climate model and their impact on the simulated summer monsoon circulations over East Asia. J. Climate, 21, 963-979. https://doi.org/10.1175/2007JCLI1694.1
  70. Yin, H., and M. G. Donat, L. V. Alexander, Y. Sun, 2014: Multi-dataset comparison of gridded observed temperature and precipitation over China. Int. J. Climatol., 35, 2809-2827.
  71. Zhang, D. F., X. J. Gao, L. C. Ouyang, and W. J. Dong, 2008: Simulation of present climate over East Asia by a regional climate model. J. Tropical Meteor., 14, 19-23.

Cited by

  1. Worsening of Heat Stress Due To Global Warming in South Korea Based on Multi-RCM Ensemble Projections : Worsening of heat stress in South Korea vol.122, pp.21, 2016, https://doi.org/10.1002/2017jd026731
  2. Future Extreme Temperature and Precipitation Mechanisms over the Korean Peninsula Using a Regional Climate Model Simulation vol.39, pp.4, 2018, https://doi.org/10.5467/jkess.2018.39.4.327
  3. Effects of climate change-related heat stress on labor productivity in South Korea vol.62, pp.12, 2016, https://doi.org/10.1007/s00484-018-1611-6
  4. Added value of dynamical downscaling for hydrological projections in the Chungju Basin, Korea vol.39, pp.1, 2019, https://doi.org/10.1002/joc.5825
  5. Future Hydrological Drought Risk Assessment Based on Nonstationary Joint Drought Management Index vol.11, pp.3, 2016, https://doi.org/10.3390/w11030532
  6. Impact of the spatial variability of daily precipitation on hydrological projections: A comparison of GCM‐ and RCM‐driven cases in the Han River basin, Korea vol.33, pp.16, 2019, https://doi.org/10.1002/hyp.13469
  7. 기후변화에 따른 국내 주요 다목적댐의 유입량 변화 전망 vol.21, pp.no.spc, 2016, https://doi.org/10.17663/jwr.2019.21.s-1.107
  8. Added value of very high resolution climate simulations over South Korea using WRF modeling system vol.54, pp.1, 2016, https://doi.org/10.1007/s00382-019-04992-x
  9. Evaluation of summer precipitation over Far East Asia and South Korea simulated by multiple regional climate models vol.40, pp.4, 2016, https://doi.org/10.1002/joc.6331
  10. Projection of future precipitation change over South Korea by regional climate models and bias correction methods vol.141, pp.3, 2016, https://doi.org/10.1007/s00704-020-03282-5
  11. Heatwave Damage Prediction Using Random Forest Model in Korea vol.10, pp.22, 2020, https://doi.org/10.3390/app10228237
  12. A surrogate weighted mean ensemble method to reduce the uncertainty at a regional scale for the calculation of potential evapotranspiration vol.10, pp.None, 2016, https://doi.org/10.1038/s41598-020-57466-0
  13. Application of Bias- and Variance-Corrected SST on Wintertime Precipitation Simulation of Regional Climate Model over East Asian Region vol.57, pp.3, 2016, https://doi.org/10.1007/s13143-020-00189-z
  14. Spatiotemporal differences and uncertainties in projections of precipitation and temperature in South Korea from CMIP6 and CMIP5 general circulation models vol.41, pp.13, 2016, https://doi.org/10.1002/joc.7159
  15. CORDEX-EA Phase 2 다중 지역기후모델을 이용한 한반도 미래 극한 기후 전망 vol.31, pp.5, 2016, https://doi.org/10.14191/atmos.2021.31.5.607