DOI QR코드

DOI QR Code

Community Structure and Distribution of Natural Seaweed Beds on the Eastern Coast of Korea

동해안 천연 해조장의 군집구조와 분포 특성

  • Park, Gyu Jin (Department of Ecological Engineering, Pukyong National University) ;
  • Ju, Hyun (Korea Fisheries Recources Agency) ;
  • Choi, Ok In (Korea Fisheries Recources Agency) ;
  • Choi, Chang Geun (Department of Ecological Engineering, Pukyong National University)
  • 박규진 (부경대학교 생태공학과) ;
  • 주현 (한국수산자원관리공단) ;
  • 최옥인 (한국수산자원관리공단) ;
  • 최창근 (부경대학교 생태공학과)
  • Received : 2017.03.14
  • Accepted : 2017.06.28
  • Published : 2017.06.30

Abstract

Natural seaweed beds and habitat environments were investigated using quantitative and qualitative methods from May to December 2015 at 3 sites in Gangneung, Uljin, and Busan along the eastern coast of Korea. In total, 9 green, 23 brown, and 64 red algal taxa were identified. The biomass of the seaweed at Gangneung was 173.2 to $613.8wet\;wt.g/m^2$ of Dictyota divaricata, 360.8 to $520.4wet\;wt.g/m^2$ of Symphyocladia linearis, and 25.9 to $470.8wet\;wt.g/m^2$ of Undaria pinnatifida. At Uljin, these numbers were 5.5 to $256.2wet\;wt.g/m^2$ of Plocamium telfarirae and 46.8 to $241.5wet\;wt.g/m^2$ of Agarum clathratum. The biomass of Sargassum coreanum and Ecklonia cava were 388.1 to $6,972.4wet\;wt.g/m^2$ and 194.9 to $958.5wet\;wt.g/m^2$, respectively, at Busan. S. coreanum and E. cava showed higher biomass compared to other seaweed at Busan. The biomass rate represented an average of 19.2 percent of the total population, ranging from 0.0 to 55.5 percent in Gangneung. In Uljin, the average was calculated as 63.8 percent, and this figure was 48.5 percent in Busan. The percentage of barren ground averaged 46.7 percent in Gangneung and 91.1 percent in Uljin. Uljin showed the highest percentage of barren ground compared to other regions. Sea urchin density appeared to be $6.0ind./m^2$ in Gangneung, $7.0ind./m^2$ in Uljin, and $2.0ind./m^2$ in Busan, with the lowest sea urchin density being that of Busan. In conclusion, the composition of species, appearance ratio, and abundance of vegetation found were similar to previous studies, but it is thought that continuous monitoring is needed due to concerns about physical and chemical pollution caused by global warming, climate change, and coastal development.

이 연구는 2015년 5월부터 12월까지 우리나라 동해안에 위치한 강릉, 울진, 부산 일대에서 천연 해조장 및 서식환경 특성을 분석하였다. 연구기간 동안 출현한 해조류는 총 96종이었으며, 분류군별로는 녹조류 9종, 갈조류 23종, 홍조류 64종이었다. 강릉의 경우, 미끈뼈대그물말(D. divaricata)이 정점별로 $173.2{\sim}613.8g\;m^{-2}$로 가장 높은 생물량을 보였고, 가는보라색우무(S. linearis)가 $360.8{\sim}520.4g\;m^{-2}$, 미역(U. pinnatifida)이 $25.9{\sim}470.8g\;m^{-2}$로 생물량이 높았다. 울진에서는 참곱슬이(P. telfairiae)가 $5.5{\sim}256.2g\;m^{-2}$, 구멍쇠미역(A. clathratum)이 $46.8{\sim}241.5g\;m^{-2}$로 생물량이 높았다. 부산에서 높은 생물량을 보인 해조류는 큰잎모자반(S. coreanum)으로 $388.1{\sim}6,972.4g\;m^{-2}$였고, 감태(E. cava)도 $194.9{\sim}958.5g\;m^{-2}$로 다른 해조류에 비해 상대적으로 높은 생물량을 나타냈다. 생체량 비율의 경우, 강릉에서 0.0 ~ 55.5 %로 평균 19.2 %를 나타내 울진과 부산에 비해 상대적으로 가장 낮았다. 울진에서는 36.8 ~ 73.3 %으로 평균 63.8 %를 보였으며, 부산은 평균 48.5 %였다. 갯녹음 비율은 강릉에서 평균 46.7 %의 비율을 나타냈고, 울진에서는 평균 91.1 %의 높은 비율을 나타냈으며 이번 연구에서 다른 지역에 비해 가장 높은 비율을 보였다. 조식성 동물의 밀도는 강릉에서 평균 6.0 개체/$m^2$로 분석되었고, 울진에서는 7.0 개체/$m^2$를 나타냈으며 부산에서 2.0 개체/$m^2$로 전체 지역 중에서 가장 낮은 조식성 동물 밀도를 보였다. 결론적으로 이전 연구결과와 비교하여 종조성, 출현비율, 밀도는 유사하게 나타났다. 하지만 지구 온난화, 기후변화, 해안개발 등에 의한 물리적, 화학적 오염과 관련하여 지속적인 모니터링 연구가 필요하다고 판단된다.

Keywords

References

  1. Bates, C. R. and R. E. DeWreede(2007), Do changes in seaweed biodiversity influence associated invertebrate epifauna?, Journal of Experimental Marine Biology and Ecology, Vol. 344, pp. 206-214. https://doi.org/10.1016/j.jembe.2007.01.002
  2. Boo, S. M.(1987), Distribution of marine algae from shore area of Kangwon Province, The Korean Journal of Phycology, Vol. 2, pp. 223-235.
  3. Choi, C. G.(2007), Algal flora and Ecklonia stolonifera Okamura (Laminariaceae) Population of Youngdo in Busan, Korea, Algae, Vol. 22, pp. 313-318. https://doi.org/10.4490/ALGAE.2007.22.4.313
  4. Choi, C. G., H. G. Kim and C. H. Sohn(2003), Transplantation of young fronds of Sargassum horneri for construction of seaweed beds, Journal of Korean Fisheries Society, Vol. 36, pp. 469-473.
  5. Choi, C. G., J. H. Kim and I. K. Chung(2008), Temporal variation of seaweed biomass in Korean coasts: Yokjido, Gyeongnam Province, Algae, Vol. 23, pp. 311-316. https://doi.org/10.4490/ALGAE.2008.23.4.311
  6. Choi, C. G., M. T. H. Chowdhury, I. Y. Choi and Y. K. Hong(2010), Marine algal flora and community structure in Kijang on the southern east coast of Korea, The Sea, Vol. 15, pp. 133-139.
  7. Choi, C. G., S. N. Kwak and C. H. Sohn(2006), Community structure of subtidal marine algae at Uljin on the east coast of Korea, Algae, Vol. 21, pp. 463-470. https://doi.org/10.4490/ALGAE.2006.21.4.463
  8. Connell, S. D., B. D. Russell and D. J. Turner(2008), Recovering a lost baseline: missing kelp forests from a metropolitan coast, Marine Ecology Progress Series, Vol. 360, pp. 63-72. https://doi.org/10.3354/meps07526
  9. Dawes, C. J.(1998), Marine botany, John Wiley & Sons, Inc. New York, pp. 628.
  10. Eriksson, B. K., G. Johansson and P. Snoeijs(2002), Long-term changes in the macroalgal vegetation of the inner Gullmar Fjord, Swedish Skagerrak coast, Journal of Phycology, Vol. 38, pp. 284-296. https://doi.org/10.1046/j.1529-8817.2002.00170.x
  11. Foster, M. S.(1975), Regulation of algal community development in a Macrocystis pyrifera forest, Marine Biology, Vol. 32, pp. 331-342. https://doi.org/10.1007/BF00388990
  12. Guiry, M. D. and G. M. Guiry(2012), Algaebase, National University of Ireland, Galway, Available from: http://www.algaebase.org (Accessed May 19, 2014).
  13. Kang, J. W.(1968), Illustrated encyclopedia of fauna & flora of Korea. Vol. 8 Marine algae, Samhwa Press, Seoul, Korea, pp. 465.
  14. Kang, P. J., Y. S. Kim and K. W. Nam(2008), Flora and community structure of benthic marine algae in Ilkwang Bay, Korea, Algae, Vol. 23, pp. 317-326. https://doi.org/10.4490/ALGAE.2008.23.4.317
  15. Kim, D. K.(2006), A study on the restoration of marine forests using artificial reef in the barren grounds along the coast of Jeju, Cheju National University, Cheju, Korea, pp. 115.
  16. Kim, M. K and K. T. Kim(2000), Studies on the seaweeds in the islands of Ullungdo and Dokdo: I. Decrease of algal species compositions and changes of marine algal flora, Algae, Vol. 15, pp. 119-124.
  17. Kim, M. K., J. K. Shin and J. H. Cha(2004), Variation of species composition of benthic algae and whitening in the coast of Dokdo island during summer, Algae, Vol. 19, pp. 69-78. https://doi.org/10.4490/ALGAE.2004.19.1.069
  18. Kim, Y. D., M. S. Park, H. I. Yoo, B. H. Min and H. J. Jin(2012), Seasonal variations of seaweed community structure at the subtidal zone of Bihwa on the East coast of Korea, Korean Journal of Fisheries and Aquatic Sciences, Vol, 45, pp. 262-270. https://doi.org/10.5657/KFAS.2012.0262
  19. Kim, Y. H. and J. K. Ahn(2006), Effects of heated effluents on the intertidal macroalgal community near Wolseong, the East coast of Korea, Algae, Vol. 21, pp. 453-461. https://doi.org/10.4490/ALGAE.2006.21.4.453
  20. Korpinen, S. and V. Jormalainen(2008), Grazing effects in macroalgal communities depend on timing of patch colonization, Journal of Experimental Marine Biology and Ecology, Vol. 360, pp. 39-46. https://doi.org/10.1016/j.jembe.2008.03.010
  21. Lee, I. K. and J. W. Kang(1986), A check list of marine algae in Korea, The Korean Journal of Phycology, Vol. 1, pp. 311-325.
  22. Lee, Y. P. and S. Y. Kang(2001), A catalogue of the seaweeds in Korea, Cheju National University Press, Cheju, Korea, p. 662.
  23. Nam, K. W. and Y. S. Kim(1999), Benthic marine algal flora and community structure of Yongho dong area in Pusan, Korea, Journal of Korean Fisheries Society, Vol. 32, pp. 374-384.
  24. Nam, K. W.(1986), On the marine benthic algal community of Chuckdo in Eastern coast of Korea, The Korean Journal of Phycology, Vol. 1, pp. 185-202.
  25. Norderhaug, K. M. and H. C. Christie(2009), Sea urchin grazing and kelp re-vegetation in the NE Atlantic, Marine Biology Research, Vol. 5, pp. 515-528. https://doi.org/10.1080/17451000902932985
  26. Ohno, M., S. Arai and M. Watanabe(1990), Seaweed succession on artificial reefs on different bottom substrata, Journal of Applied Phycology, Vol. 2, pp. 327-332. https://doi.org/10.1007/BF02180922
  27. Russell, B. D., J. I. Thompson, L. J. Falkenberg and S. D. Connell(2009), Synergistic effects of climate change and local stressors: CO2 and nutrient-driven change in subtidal rocky habitats, Global Change Biology, Vol. 15, pp. 2153-2162. https://doi.org/10.1111/j.1365-2486.2009.01886.x
  28. Shinmura, I.(1983), Series for construction of seaweed beds. 5. Technique and problem for construction of seaweed beds in southern coast of Japan, Suisankenkyu, Vol. 2, pp. 67-71.
  29. Terawaki, T., S. Arai and Y. Kawasaki(1995), Methods of submarine forest formation considering local limiting factors of distribution, Fisheries Engineering, Vol. 32, pp. 145-154.
  30. Thompson, R. E., B. J. Wilson, M. L. Tobin, A. S. Hill and S. J. Hawkins(1996), Biologically generated habitat provision and diversity of rocky shore organisms at a hierarchy of spatial scales, Journal of Experimental Marine Biology and Ecology, Vol. 202, pp. 73-84. https://doi.org/10.1016/0022-0981(96)00032-9
  31. Yoo, J. S.(2003a), Biodiversity and community structure of marine benthic organisms in the rocky shore of Dongbaekseom, Busan, Algae, Vol. 18, pp. 225-232. https://doi.org/10.4490/ALGAE.2003.18.3.225
  32. Yoo, J. S.(2003b), Dynamics of marine benthic community in intertidal zone of Seoam, Busan, The Sea, 8, pp. 420-425.

Cited by

  1. 양양군과 포항 해역에 시설한 인공어초에서 진행된 해조천이와 군집에 관한 연구 vol.4, pp.2, 2017, https://doi.org/10.23005/ksmls.2019.4.2.81