DOI QR코드

DOI QR Code

Dose Reduction According to the Exposure Condition in Intervention Procedure : Focus on the Change of Dose Area and Image Quality

인터벤션 시 방사선조사 조건에 따른 선량감소 : 면적선량과 영상화질 변화를 중심으로

  • Hwang, Jun-Ho (Department of Radiology, Kyunghee University Hospital) ;
  • Jung, Ku-Min (Department of Radiology, Kyunghee University Hospital) ;
  • Kim, Hyun-Soo (Department of Radiological Technology, Shingu University) ;
  • Kang, Byung-Sam (Department of Radiological Technology, Shingu University) ;
  • Lee, Kyung-Bae (Department of Radiology, Kyunghee University Hospital)
  • 황준호 (경희대학교병원 영상의학과) ;
  • 정구민 (경희대학교병원 영상의학과) ;
  • 김현수 (신구대학교 방사선과) ;
  • 강병삼 (신구대학교 방사선과) ;
  • 이경배 (경희대학교병원 영상의학과)
  • Received : 2017.08.03
  • Accepted : 2017.09.13
  • Published : 2017.09.30

Abstract

The purpose of this study is to suggest a method to reduce the dose by Analyzing the dose area product (DAP) and image quality according to the change of tube current using NEMA Phantom. The spatial resolution and low contrast resolution were used as evaluation criteria in addition to signal to noise ratio (SNR) and contrast to noise ratio (CNR), which are important image quality parameters of intervention. Tube voltage was fixed at 80 kVp and the amount of tube current was changed to 20, 30, 40, and 50 mAs, and the dose area product and image quality were compared and analyzed. As a result, the dose area product increased from $1066mGycm^2$ to $6160mGycm^2$ to 6 times as the condition increased, while the spatial resolution and low contrast resolution were higher than 20 mAs and 30 mAs, Spatial resolution and low contrast resolution were observed below the evaluation criteria. In addition, the SNR and CNR increased up to 30 mAs, slightly increased at 40 mAs, but not significantly different from the previous one, and decreased at 50 mAs. As a result, the exposure dose significantly increased due to overexposure of the test conditions and the image quality deteriorated in all areas of spatial resolution, low contrast resolution, SNR and CNR.

본 연구는 NEMA Phantom을 사용하여 관전류량 변화에 따른 면적선량과 영상화질의 분석을 통해 선량을 감소할 수 있는 방법을 제시하고자 하였다. 인터벤션의 특성상 중요한 화질평가 항목인 공간 분해능, 저 대조도 분해능과 함께 신호 대 잡음비(Signal to Noise Ratio; SNR), 대조도 대 잡음비(Contrast to Noise Ratio; CNR)를 평가기준으로 하였고, 관전압은 80 kVp로 고정하고, 관전류량을 20, 30, 40, 50 mAs로 변화시켜 면적선량과 영상화질을 비교분석하였다. 그 결과 관전압을 고정한 상태에서 면적선량은 조건이 증가함에 따라 $1,066mGycm^2$에서 $6,160mGycm^2$으로 약 6배까지 증가하였고, 공간분해능과 저 대조도 분해능은 20 mAs, 30 mAs에서 평가기준보다 높게 관찰되었으나 40 mAs는 공간 분해능, 50 mAs에서는 공간 분해능과 저 대조도 분해능이 평가기준 이하로 관찰되었다. 또한 SNR과 CNR은 30 mAs까지는 증가하다 40 mAs에서 다소 증가하기는 하였으나 이전과 큰 차이가 없었고, 50 mAs에서는 감소하는 경향을 보였다. 결론적으로 관전류의 과잉노출로 피폭선량이 증가하고, 공간 분해능, 저 대조도 분해능, SNR, CNR 모든 영역에서 영상화질이 저하된다는 것을 알 수 있었고, 적절한 관전류량의 설정으로 인터벤션에서 피폭선량을 줄이고 영상화질을 충분히 개선할 수 있다는 것을 알 수 있었다.

Keywords

References

  1. Kim, J. S., Kim, J. M., Lee, Y. H., et al., "National Data Analysis of General Radiography Projection Method in Medical Imaging", Journal of radiological science and technology, Vol. 37, No. 3, pp. 169-175, 2014.
  2. Hwang, J. H., Lee, K. H., Choi, Y. B., et al., "Effectiveness Evaluation of the Tube Voltage Measurement by using Additional Filter", Journal of radiological science and technology, Vol 38, No 4, pp. 355-363, 2015. https://doi.org/10.17946/JRST.2015.38.4.04
  3. Kim, H. J., Yoon, J., "Convergence Comparison of Metal Artifact Reduction Rate for Pacemaker Insertion of CT Imaging Phantoms in the Raw Data with MAR Algorithm", Journal of the Korea Convergence Society, Vol. 8, No.1, pp. 43-49, 2017. https://doi.org/10.15207/JKCS.2017.8.1.043
  4. Seoung, Y. H., "Evaluation of Surface Radiation Dose Reduction and Radiograph Artifact Images in Computed Tomography on the Radiation Convergence Shield by Using Sea-Shells", Journal of the Korea Convergence Society, Vol. 8, No. 2, pp. 113-120, 2017. https://doi.org/10.15207/JKCS.2017.8.2.113
  5. Park, H. S., Lim, C. H., Kang, B. S., et al., "A Study on the Evaluation of Patient Dose in Interventional Radiology", Journal of radiological science and technology, Vol. 35, No. 4, pp. 299-308, 2012.
  6. Park, H., Jeon, J. S., Kim, Y. W., et al., "Dose assessment according to Differences in the Content of Iodine in Contrast Media used in Interventional Procedure", Journal of the Korea Contents Association, Vol. 14, No. 3, pp. 337-345, 2014. https://doi.org/10.5392/JKCA.2014.14.03.337
  7. Kim, J. S., Kwon, S. M., & Kim, J. M., "Basic Principles of CT Dose Index and Understanding of CT Parameter for Dose Reduction Technique", Journal of radiological science and technology, Vol. 38, No.1, pp. 51-61, 2015. https://doi.org/10.17946/JRST.2015.38.1.07
  8. Lee, J. S., Kim, C. S., "The Additional Filter and Ion Chamber Sensor Combination for Reducing Patient Dose in Digital Chest X-ray Projection", Journal of the Korean Society of Radiology, Vol. 9, No. 3, pp. 175-181, 2015. https://doi.org/10.7742/jksr.2015.9.3.175
  9. Kang, B. S., Lee, K. M., Shim, W. Y., et al., "Analyze for the Quality Control of General X-ray Systems in Capital region", Journal of radiological science and technology, Vol. 35 No. 2, pp. 93-102, 2012.
  10. Kim, K. W., Kwon, Y. R., Seo, S. W., et al., "Comparison of Exposure Dose by Using AEC Mode of Abdomen AP Study in Radiography", Journal of radiological science and technology, Vol. 38, No. 3, pp. 205-211, 2015. https://doi.org/10.17946/JRST.2015.38.3.03
  11. Kang, B. S., Son, J. H., & Kim, S. C., "Establishment of Quality Control System for Angiographic Unit", Journal of the Korea Contents Association, Vol. 11, No. 1, pp. 236-244, 2011. https://doi.org/10.5392/JKCA.2011.11.1.236
  12. AAPM report No. 15, "performance evaluationand quality assurance in digital subtraction angiography", American Institute of Physics, 1985.
  13. Lee, K. M., Kang, B. S., Park, H. H., et al., "Analyzed of Dose Area Product in Error Rate", The Korean Society of Cardio-Vascular Interventional Technology, Vol. 15, No. 1, pp. 128-134, 2012.
  14. Son, S. Y., Choi, K. W., Min, J. H., et al., "Evaluation of quantitative on T-spine exhalation technique and T-spine breathing technique of natural breathing", Journal of the Korea Academia-Industrial cooperation Society, Vol. 14, No. 9, pp. 4429-4436, 2013. https://doi.org/10.5762/KAIS.2013.14.9.4429
  15. Han, J. B., "Reference Levels for Radiation Dose in Angiography and Interventional Radiology : In the Cerebrum", Journal of the Korea Contents Association, Vol. 11 No. 3, pp. 302-308, 2011. https://doi.org/10.5392/JKCA.2011.11.3.302
  16. Kang, B. S., Yoon, Y. S., "Evaluation of Patient Radiation Doses Using DAP meter in Interventional Radiology Procedures", Journal of radiological science and technology, Vol. 40, No. 1, 2017.
  17. Kang, B. S., Park, M. J., & Kim, S. C., "Evaluation of Effective and Organ Dose Using PCXMC Program in DUKE Phantom and Added Filter for Computed Radiography System", Journal of radiological science and technology, Vol. 37, No. 1, pp. 7-14, 2014.
  18. Yang, S., Han, J. B., Choi, N. G., et al., "The Review of Exposure Index in Digital Radiography and Image Quality", Journal of radiation protection and research, Vol. 38, No. 1, pp. 29-36, 2013. https://doi.org/10.14407/jrp.2013.38.1.029
  19. Shepard, S. J., Wang, J., Michael, F., et al., "An Exposure Indicator for Digital Radiography", The International Journal of Medical Physics Research and Practice, Vol. 36, No. 7, pp. 2898-2914, 2009.