DOI QR코드

DOI QR Code

Effect of Heat Capacity of Coagulant on Morphology of PVDF-Silica Mixture Through TIPS Process for the Application of Porous Membrane

다공성 분리막으로 응용을 위한 PVDF-실리카 혼합물의 응고액 열용량 변화에 따른 모폴로지 변화

  • Lee, Jeong Woo (Department of materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Nam, Sang Yong (Department of materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University)
  • 이정우 (경상대학교 나노신소재융합공학과, 공학연구원) ;
  • 남상용 (경상대학교 나노신소재융합공학과, 공학연구원)
  • Received : 2017.10.26
  • Accepted : 2017.10.30
  • Published : 2017.10.31

Abstract

In this study, we prepared PVDF membranes via TIPS for water treatment applications. PVDF was used for its excellent chemical and mechanical properties. The effect of coagulation bath composition, temperature, and heat capacity on the overall membrane morphology was studied and observed using SEM. A mixture of DOP and DBP was used as the diluent, and silica was used as an additive. It was observed that as the heat capacity of the coagulation bath increased, the crystallization rate of PVDF decreased yielding larger pores. Also, as the heat capacity of the coagulation bath decreased, the crystallization rate of PVDF increased yielding smaller pores.

본 연구는 열유도 상분리법(thermally induced phase separation, TIPS)을 사용하여, 수처리 분리막에 적용하기 위해, 응고조의 열용량의 변화를 위해 서로 다른 두 용액의 함량을 조절하였다. 또한, 온도의 변화를 통해 분리막의 구조 변화에 대하여 관찰하였다. 분리막을 제조하기 위한 소재로는 수처리 분리막에 주로 이용되는 기계적 물성과 내화학성이 우수한 poly (vinylidene fluoride)(PVDF)를 사용하였고, 첨가제로 실리카를 이용하였다. 희석제는 PVDF와 호환성이 좋은 dioctyl phthalate (DOP), dibutyl phthalate (DBP)를 사용하였다. 응고액의 함량 변화에 따른 열용량 변화에 따라 제조된 분리막의 구조를 관찰하기 위해 SEM 이미지를 촬영하였다. 열용량이 증가할수록 PVDF의 결정화 속도가 느려져 큰 기공을 나타내며 열용량이 작을수록 결정화 속도가 증가하여 작은 기공이 생기는 것을 확인하였다.

Keywords

References

  1. I. S. Kim and B. S. Oh, "Technologies of seawater desalination and wastewater reuse for soving water shortage", J. Korean Soc. Environ. Eng., 30, 1197 (2008).
  2. B. J. Cha, S. D. Chi, and J. H. Kim, "Membrane market for water treatment", KIC News., 14, 2 (2011).
  3. S. K. Kang, K. H. Kim, H. S. Lee, and D. S. Bae, "R&D trend and information analysis of ceramic membrane for water treatment", KIC News., 7, 83 (2004).
  4. D. J. Kim, H. Y. Hwang, S. J. Kim, Y. T. Hong, H. J. Kim, T. H. Leem, and S. Y. Nam, "Characterization of SPAES composite membrane containing variously funtionailized MMT for direct methanol fuel cell application", Trans Korean Hydrog New Energy Soc., 22, 42 (2011).
  5. S. M. Woo, J. J. Choi, and S. Y. Nam, "Prepration of hydoxy polyimide membranes and their carbon dioxide permeation property", Membr. J., 22, 128 (2012).
  6. I. H. Song, J. H. Ha, B. S. Bae, Y. J. Park, J. W. Ko, Y. K. Baek, Y. K. Kim, J. G. Lee, and Y. D. Hahn, "Research trend of ceramic filter for water treatment", J. Kor. Powd. Met. Inst., 21, 62 (2014). https://doi.org/10.4150/KPMI.2014.21.1.62
  7. S. G. Hong, S. H. Lee, J. H. Kim, J. H. Kim, and Y. G. Ju, "Evolution of RO process for green future", KIC News., 14, 9 (2011).
  8. B. M. Jun, E. T. Yun, S. W. Han, N. T. P. Nga, H. G. Park, and Y. N. Kwon, "Chlorine disinfection in water treatment plants and its effects on polyamide membrane", Membr. J., 24, 88 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.2.88
  9. M. M. Pendergast and E. M. Hoek, "A review of water treatment membrane nanotechnologies", Energy Environ. Sci., 4, 1946 (2011). https://doi.org/10.1039/c0ee00541j
  10. H. J. Lee, J. H. Choi, B. J. Chang, and J. H. Kim, "Research and development trends of ion exchange membrane processes", KIC News., 14, 21 (2011).
  11. H. D. Lee, Y. H. Cho, and H. B. Park, "Current research trends in water treatment membranes based on nano materials and nano technologies", Membr. J., 23, 101 (2013).
  12. S. M. Woo, Y. S. Chung, and S. Y. Nam, "Evaluation of morphology and water flux for polysulfone flat sheet membrane with conditions of coagulation bath and dope solution", Membr. J., 22, 258 (2012).
  13. K. M. Kyung and J. Y. Park, "Effect of operating conditions and recovery of water back-washing in spiral wound microfiltration module manufactured with PVDF nanofibers for water treatment", Membr. J., 25, 180 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.2.180
  14. S. M. Lee, Y. J. Byun, J. H. Kim, and S. S. Kim, "Surface hydrophilization of PVDF membrane by thermal polymerization lamination process", Membr. J., 23, 220 (2013).
  15. G. Ji, L. Zhu, B. Zhu, C. Zhang, and Y. Xu, "Structure formation and characterization of PVDF hollow fiber membrane prepared via TIPS with diluent mixture", J. Membr. Sci., 319, 264 (2008). https://doi.org/10.1016/j.memsci.2008.03.043
  16. I. Y. Jung, M. N. Han, and M. H. Cha, "Phase separation of Thermally Induced Phase Separation membrane and minute structure control with phase separation", Theories and Applications of Chem. Eng., 9, 1994 (2003).
  17. J. F. Kim, J. T. Jung, H. H. Wang, S. Y. Lee, T. Moore, A. Sanguineti, E. Drioli, and Y. M. Lee, "Microporous PVDF membranes via thermally induced phase separation (TIPS) and stretching methods", J. Membr. Sci., 509, 94 (2016). https://doi.org/10.1016/j.memsci.2016.02.050
  18. M. S. Park, J. H. Kim, M. S. Jang, and S. S. Kim, "Preparaion of PVDF hollow fiber membrane via TIPS (thermally induced phase separation) and stretching", Membr. J., 24, 158 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.2.158
  19. Z. Y. Cui, C. H. Du, Y. Y. Xu, G. L. Ji, and B. K. Zhu, "Preparation of porous PVdF membrane via thermally induced phase separation using sulfolane", J. Appl. Polym. Sci., 108, 272 (2008). https://doi.org/10.1002/app.27494
  20. S. H. Han and I. S. Chang, "Comparison of filtration resistances according to membrane cleaning methods", J. Environ. Sci. Int., 25, 817 (2016). https://doi.org/10.5322/JESI.2016.25.6.817
  21. J. M. Yang, C. H. Park. B. H. Lee, and S. Y. Kim, "Textile wastewater treatment by MF-UF combined membrane filtration", Clean Tech., 12, 151 (2006).
  22. J. H. Kim, "State of art of membrane processes for water Re-use", Membr. J., 10, 175 (2000).
  23. D. L. Cho and J. Lee, "Membrane fouling in microfiltration process and its control by surface modification of membrane", Polym. Korea., 21, 142 (1997).
  24. S. J. Kim, J. W. Lee, and S. Y. Nam, " Study of thermally induced phase separation of polyvinylidene fluoride-silica mixture for the preparation of porous polymeric membrane", Membr. J., 27, 189 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.2.189
  25. B. Liu, Q. Du, and Y. Yang, "The phase diagrams of mixtures of EVAL and PEG in relation to membrane formation", J. Membr. Sci., 180, 81 (2000). https://doi.org/10.1016/S0376-7388(00)00526-3
  26. J. N. Han, D. Yang, S. Zhang, X. Liu, Z. Zhang, and X. Jian, "Effects of compatibility difference in the mixed solvent system on the performance of PPES hollow fiber UF membrane", J. Membr. Sci., 365, 311 (2010). https://doi.org/10.1016/j.memsci.2010.09.022
  27. C. W. Park and I. S. Noh, "Thermal stabilization of PVC in non-toxic stabilizer systems.(III) octanol/ PEG phthalate coester plasticizer", Polym. Korea., 19, 340 (1995).
  28. M. Poostforush and H. Azizi, "Superior thermal conductivity of transparent polymer nanocomposites with a crystallized alumina membrane", Express Polym. Lett., 8, 293 (2014). https://doi.org/10.3144/expresspolymlett.2014.32