DOI QR코드

DOI QR Code

Analysis of Meteorological and Radiation Characteristics using WISE Observation Data

WISE 관측자료를 이용한 기상 및 복사 특성 분석

  • Lee, Hankyung (Research Center for Atmospheric Environment, Hankuk University of Foreign Studies) ;
  • Jee, Joon-Bum (Research Institute for Radiation-Satellite, Gangneung-Wonju National University) ;
  • Min, Jae-Sik (Research Center for Atmospheric Environment, Hankuk University of Foreign Studies) ;
  • Kim, Sangil (Research Center for Atmospheric Environment, Hankuk University of Foreign Studies) ;
  • Chae, Jung-Hoon (Research Center for Atmospheric Environment, Hankuk University of Foreign Studies)
  • 이한경 (국외국어대학교 대기환경연구센터) ;
  • 지준범 (강릉원주대학교 복사-위성연구소) ;
  • 민재식 (국외국어대학교 대기환경연구센터) ;
  • 김상일 (국외국어대학교 대기환경연구센터) ;
  • 채정훈 (국외국어대학교 대기환경연구센터)
  • Received : 2017.10.23
  • Accepted : 2018.02.21
  • Published : 2018.02.28

Abstract

We analyzed the meteorological and radiation characteristics of Seoul metropolitan area using data from energy flux towers that were installed and operated by the Weather Information Service Engine (WISE). The meteorological and radiation variables included temperature, pressure, wind speed, wind direction, relative humidity, surface temperature, rainfall amount, upward and downward solar radiation, upward and downward longwave radiation, albedo and emissivity from 14 energy flux stations located in the Seoul metropolitan area from July 2016 to July 2017. According to the monthly data during the period, the albedo is low and emissivity is high at the Jungnang station in the urban and opposite at Bucheon station in the suburban area. For a station in natural state, the albedo was higher than urban stations because solar radiation reflects effectively. Relatively high temperatures were shown at stations located in urban area with low albedo and high emissivity, in general. However, temperature was high at Gajwa and Ttukseom stations, the albedo was relatively high due to the station environment surrounded by glass wall buildings and the Han river. In the station located in suburban area, both emissivity and temperature were low. Among these stations, Bucheon station had the highest emissivity values because the surface temperature was relatively lower than that of the suburban area. As a result, the albedo decreased and the emissivity increased at stations in urban areas. Additionally, Seoul metropolitan area had less than $100Wm^{-2}$ of net radiation, which implied that radiation energy could be absorbed in the atmosphere.

차세대도시농림융합기상사업단의 에너지수지타워 관측자료를 이용하여 수도권 기상과 복사특성에 대하여 분석하였다. 서울 수도권에 위치한 총 14개 에너지수지타워의 기온, 풍속, 상대습도, 지표면 온도, 강수량, 단파 및 장파 복사량과 복사관측자료를 이용하여 산출한 알베도와 방출률을 분석하였다. 월별 자료에 따르면, 도시에 위치한 중랑지점에서 알베도는 낮고 방출률은 높은 특성을 나타냈고 교외지역인 부천지점에서는 반대의 특성이 나타났다. 자연적인 지표상태에서는 태양복사에너지를 효과적으로 반사하여 대부분 중랑지점보다 알베도가 높게 나타났다. 연 평균 기온이 비교적 높게 나타난 지점들은 서울 도심에 위치하고 있었으며, 알베도가 대체적으로 낮게 분포되었다. 가좌지점과 뚝섬지점은 관측 기온이 높았지만, 관측소 주변 유리벽 건물 및 한강으로 둘러싸인 환경으로 알베도가 비교적 높게 나타났다. 교외지역에 위치하고, 기온이 낮았던 지점들은 대체로 낮은 방출률을 나타냈다. 그 중 부천지점에서는 다소 높은 방출률이 나타났는데, 이는 관측지점 주변이 논과 밭으로 구성되어 있어 교외지역의 관측지점보다 지표면 온도가 상대적으로 낮게 관측되었기 때문이다. 결과적으로 도심지일수록 알베도는 감소하고, 방출률은 증가하는 경향을 확인할 수 있다. 또한, 서울 지역의 순 복사량이 $100Wm^{-2}$ 이하로 나타나 에너지가 대기 중에 흡수된 것으로 볼 수 있다.

Keywords

References

  1. Arya, S.P., 2001, Introduction to Micrometeorology. Academic press, New York, USA, 79 p.
  2. Chae, J.H., Park, M.J., and Choi, Y.J., 2014, The WISE Quality Control System for Integrated Meteorological Sensor Data. Atmosphere, 24(3), 445-456. (in Korean) https://doi.org/10.14191/Atmos.2014.24.3.445
  3. Choi, M.H. and Park, M.S. 2014, The Verification and Analysis of Atmospheric boundary layer height in urban by using Aerosol Lidar and Ceilometer. Proceedings of the Autumn Meeting of KMS 891-892. (in Korean)
  4. Chrysoulakis, N., Heldens, W., Gastellu-Etchegorry, J.P., Grimmond, C.S.B., Feigenwinter, C., Lindberg F., and Al Bitar, A., 2015, Urban Energy Budget Estimation from Sentinels: The URBANFLUXES Project. Mapping Urban Areas from Space, 16.
  5. Feigenwinter, C., Parlow, E., Vogt, R., Schmutz, M., Chrysoulakis, N., Lindberg F., and del Frate, F., 2017, Spatial distribution of sensible and latent heat flux in the URBANFLUXES case study city Basel (Switzerland). In Urban Remote Sensing Event (JURSE), 1-4.
  6. Grimmond, C.S.B., 2006, Progress in measuring and observing the urban atmosphere, Theoretical and Applied Climatology, 84(1-3), 3-22. https://doi.org/10.1007/s00704-005-0140-5
  7. Iqbal, M., 1983, An introduction to solar radiation, Academic press, New York, USA, 391 p.
  8. Jee, J.B., Kim, Y.D., Lee, W.H., and Lee, K.T., 2010, Temporal and Spatial Distributions of Solar Radiation with Surface Pyranometer Data in South Korea, The Journal of The Korean Earth Science Society, 31(7), 720-737. (in Korean) https://doi.org/10.5467/JKESS.2010.31.7.720
  9. Jung, I.S., Choi, D.H., and Lee, B.Y., 2011a, Analysis of Radiative Characteristics at Urban Area by Observation in Summer Season. Journal of the Korean Solar Energy Society, 31(3), 133. (in Korean) https://doi.org/10.7836/kses.2011.31.3.133
  10. Jung, I.S., Choi, D.H., and Lee B.Y., 2011b, Study on Characteristics of Radiation Environment in the Urban through the Field Observation in the Summer, The Autumn Meeting of Korean Solar Energy Society, 31(2). (in Korean)
  11. Kang, K., Koo, H.J., Byon, J.Y., Park, Y.S., and Jung, H.S., 2013, Comparison of Surface Fluxes Based on Landuse Characteristics Near Gangjeong-Goryeong Weir of the Nakdong River, The Journal of The Korean Earth Science Society, 34(6), 561-574. (in Korean) https://doi.org/10.5467/JKESS.2013.34.6.561
  12. Kang, K. and Kim, J.J., 2017, A Study on Estimation of Inflow Wind Speeds in a CFD Model Domain for an Urban Area. Atmosphere, 27(1), 67-77. (in Korean) https://doi.org/10.14191/Atmos.2017.27.1.067
  13. Kipp and Zonen, 2014, CNR 4 Net Radiometer Instruction Manual, Kipp & Zonen, Netherlands, 35 p.
  14. Kolokotroni, M. and Giridharan, R. 2008, Urban heat island intensity in London: An investigation of the impact of physical characteristics on changes in outdoor air temperature during summer. Solar energy, 82(11), 986-998. https://doi.org/10.1016/j.solener.2008.05.004
  15. Kounouhewa, B., Mamadou, O., N'Gobi G.K., and Awanou, C.N., 2013, Dynamics and diurnal variations of surface radiation budget over agricultural crops located in Sudanian climate. Atmospheric and Climate Sciences, 3(01), 121. https://doi.org/10.4236/acs.2013.31014
  16. Kwon, T.H., Park, M.S., Yi, C., and Choi, Y.J., 2014, Effects of different averaging operators on the urban turbulent fluxes. Atmosphere, 24(2), 197-206. (in Korean) https://doi.org/10.14191/Atmos.2014.24.2.197
  17. Lee, S.H., Park, M.H., and Kim, H.D., 2008, Study on the Variation of Nighttime Cooling Rate Associated with Urbanization, J. Korean Soc. Atmos. Environ., 24(1), 83-90. (in Korean) https://doi.org/10.5572/KOSAE.2008.24.1.083
  18. Lee, S.H., Ahn, J.S., Kim, S.W., and Kim, H.D., 2010, Multiple Albedo Variation Caused by the Shadow Effect of Urban Building and Its Impacts on the Urban Surface Heat Budget, The Journal of The Korean Earth Science Society, 31(7), 738-748. (in Korean) https://doi.org/10.5467/JKESS.2010.31.7.738
  19. Lee, Y.S. and Kim, J.J., 2011, Effects of an Apartment Complex on Flow and Dispersion in an Urban Area. Atmosphere. 21(1), 95108. (in Korean)
  20. Liu, X. and Padilla, W.J., 2016, Thermochromic infrared metamaterials. Advanced Materials, 28(5), 871-875. https://doi.org/10.1002/adma.201504525
  21. Oke, T.R., 1982, The energetic basis of the urban heat island, Quart, J. Roy. Meteor. Soc., 108, 1-24.
  22. Park, M.S., Joo, S.J., and Park, S.U., 2014, Carbon dioxide concentration and flux in an urban residential area in Seoul, Korea. Advances in Atmospheric Sciences, 31(5), 1101. https://doi.org/10.1007/s00376-013-3168-y
  23. Park, S.H., Jee, J.B., and Yi, C., 2015, Sensitivity test of the numerical simulation with high resolution topography and landuse over seoul metropolitan and surrounding areas. Atmosphere, 25(2), 309-322. (in Korean) https://doi.org/10.14191/Atmos.2015.25.2.309
  24. Park, M.S., Park, S.H, Chae, J.H., Choi, M.H., Song, Y., Kang, M., and Roh, J.W., 2017, High-resolution urban observation network for user-specific meteorological information service in the Seoul Metropolitan Area, South Korea. Atmospheric Measurement Techniques, 10(4), 1575.
  25. Song, Y., Chae, J.H., Choi, M.H., Park, M.S., and Choi, Y.J., 2014, Standardization of metadata for urban meteorological observations. Journal of Korean Society for Atmospheric Environment, 30(6), 600-618. (in Korean) https://doi.org/10.5572/KOSAE.2014.30.6.600