DOI QR코드

DOI QR Code

Ginsenosides analysis of New Zealand-grown forest Panax ginseng by LC-QTOF-MS/MS

  • Chen, Wei (School of Food and Advanced Technology, Massey University) ;
  • Balan, Prabhu (Riddet Institute, Massey University) ;
  • Popovich, David G. (School of Food and Advanced Technology, Massey University)
  • Received : 2019.01.08
  • Accepted : 2019.04.25
  • Published : 2020.07.15

Abstract

Background: Ginsenosides are the unique and bioactive components in ginseng. Ginsenosides are affected by the growing environment and conditions. In New Zealand (NZ), Panax ginseng Meyer (P. ginseng) is grown as a secondary crop under a pine tree canopy with an open-field forest environment. There is no thorough analysis reported about NZ-grown ginseng. Methods: Ginsenosides from NZ-grown P. ginseng in different parts (main root, fine root, rhizome, stem, and leaf) with different ages (6, 12, 13, and 14 years) were extracted by ultrasonic extraction and characterized by Liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. Twenty-one ginsenosides in these samples were accurately quantified and relatively quantified with 13 ginsenoside standards. Results: All compounds were separated in 40 min, and a total of 102 ginsenosides were identified by matching MS spectra data with 23 standard references or published known ginsenosides from P. ginseng. The quantitative results showed that the total content of ginsenosides in various parts of P. ginseng varied, which was not obviously dependent on age. In the underground parts, the 13-year-old ginseng root contained more abundant ginsenosides among tested ginseng samples, whereas in the aboveground parts, the greatest amount of ginsenosides was from the 14-year-old sample. In addition, the amount of ginsenosides is higher in the leaf and fine root and much lower in the stem than in the other parts of P. ginseng. Conclusion: This study provides the first-ever comprehensive report on NZ-grown wild simulated P. ginseng.

Keywords

References

  1. Yang Y, Ren C, Zhang Y, Wu X. Ginseng: an nonnegligible natural remedy for healthy aging. Aging Dis 2017;8:708-20. https://doi.org/10.14336/AD.2017.0707
  2. Ma GD, Chiu CH, Hsu YJ, Hou CW, Chen YM, Huang CC. Changbai mountain ginseng (Panax ginseng C.A. Mey) extract supplementation improves exercise performance and energy utilization and decreases fatigue-associated parameters in mice. Molecules 2017;22.
  3. Yu S, Zhou X, Li F, Xu C, Zheng F, Li J, Zhao H, Dai Y, Liu S, Feng Y. Microbial transformation of ginsenoside Rb1, Re and Rg1 and its contribution to the improved anti-inflammatory activity of ginseng. Sci Rep 2017;7:138. https://doi.org/10.1038/s41598-017-00262-0
  4. Kim C, Lee JH, Baek SH, Ko JH, Nam D, Ahn KS. Korean red ginseng extract enhances the anticancer effects of sorafenib through abrogation of CREB and c-jun activation in renal cell carcinoma. Phytother Res 2017;31:1078-89. https://doi.org/10.1002/ptr.5829
  5. Qiu S, Yang WZ, Yao CL, Shi XJ, Li JY, Lou Y, Duan YN, Wu WY, Guo DA. Malonylginsenosides with potential antidiabetic activities from the flower buds of Panax ginseng. J Nat Prod 2017;80:899-908. https://doi.org/10.1021/acs.jnatprod.6b00789
  6. Wang HP, Zhang YB, Yang XW, Zhao DQ, Wang YP. Rapid characterization of ginsenosides in the roots and rhizomes of Panax ginseng by UPLC-DAD-QTOFMS/MS and simultaneous determination of 19 ginsenosides by HPLC-ESI-MS. J Ginseng Res 2016;40:382-94. https://doi.org/10.1016/j.jgr.2015.12.001
  7. Wang HP, Zhang YB, Yang XW, Yang XB, Xu W, Xu F, Cai SQ, Wang YP, Xu YH, Zhang LX. High-Performance liquid chromatography with diode array detector and electrospray ionization ion trap time-of-flight tandem mass spectrometry to evaluate ginseng roots and rhizomes from different regions. Molecules 2016;21.
  8. Shin BK, Kwon SW, Park JH. Chemical diversity of ginseng saponins from Panax ginseng. J Ginseng Res 2015;39:287-98. https://doi.org/10.1016/j.jgr.2014.12.005
  9. Hwang CR, Lee SH, Jang GY, Hwang IG, Kim HY, Woo KS, Lee J, Jeong HS. Changes in ginsenoside compositions and antioxidant activities of hydroponic-cultured ginseng roots and leaves with heating temperature. J Ginseng Res 2014;38:180-6. https://doi.org/10.1016/j.jgr.2014.02.002
  10. Szakiel A, Pa˛czkowski C, Henry M. Influence of environmental abiotic factors on the content of saponins in plants. Phytochemistry Reviews 2010;10:471-91. https://doi.org/10.1007/s11101-010-9177-x
  11. Shi W, Wang Y, Li J, Zhang H, Ding L. Investigation of ginsenosides in different parts and ages of Panax ginseng. Food Chemistry 2007;102:664-8. https://doi.org/10.1016/j.foodchem.2006.05.053
  12. Liu Z, Wang CZ, Zhu XY, Wan JY, Zhang J, Li W, Ruan CC, Ruan CS. Dynamic changes in neutral and acidic ginsenosides with different cultivation ages and harvest seasons: identification of chemical characteristics for Panax ginseng quality control. Molecules 2017;22.
  13. Xu XF, Xu SY, Zhang Y, Zhang H, Liu MN, Liu H, Gao Y, Xue X, Xiong H, Lin RC, et al. Chemical comparison of two drying methods of mountain cultivated ginseng by UPLC-QTOF-MS/MS and multivariate statistical analysis. Molecules 2017;22.
  14. In G, Ahn NG, Bae BS, Lee MW, Park HW, Jang KH, Cho BG, Han CK, Park CK, Kwak YS. In situ analysis of chemical components induced by steaming between fresh ginseng, steamed ginseng, and red ginseng. J Ginseng Res 2017;41:361-9. https://doi.org/10.1016/j.jgr.2016.07.004
  15. Baeg IH, So SH. The world ginseng market and the ginseng (Korea). J Ginseng Res 2013;37:1-7. https://doi.org/10.5142/jgr.2013.37.1
  16. Gui QF, Xu ZR, Xu KY, Yang YM. The efficacy of ginseng-related therapies in type 2 diabetes mellitus: an updated systematic review and meta-analysis. Medicine (Baltimore) 2016;95:e2584. https://doi.org/10.1097/md.0000000000002584
  17. Cui CH, Kim SC, Im WT. Characterization of the ginsenoside-transforming recombinant beta-glucosidase from Actinosynnema mirum and bioconversion of major ginsenosides into minor ginsenosides. Appl Microbiol Biotechnol 2013;97:649-59. https://doi.org/10.1007/s00253-012-4324-5
  18. Kim SJ, Shin JY, Ko SK. Changes in the contents of prosapogenin in Red ginseng (Panax ginseng) depending on the extracting conditions. J Ginseng Res 2016;40:86-9. https://doi.org/10.1016/j.jgr.2015.04.008
  19. Han J, Li P, Cai W, Shao X. Fast determination of ginsenosides in ginseng by high-performance liquid chromatography with chemometric resolution. J Sep Sci 2014;37:2126-30. https://doi.org/10.1002/jssc.201400403
  20. Wan JB, Yang FQ, Li SP, Wang YT, Cui XM. Chemical characteristics for different parts of Panax notoginseng using pressurized liquid extraction and HPLC-ELSD. J Pharm Biomed Anal 2006;41:1596-601. https://doi.org/10.1016/j.jpba.2006.01.058
  21. Osaka I, Hisatomi H, Ueno Y, Taira S, Sahashi Y, Kawasaki H, Arakawa R. Twodimensional mapping using different chromatographic separations coupled with mass spectrometry for the analysis of ginsenosides in Panax ginseng root and callus. Anal Sci 2013;29:429-34. https://doi.org/10.2116/analsci.29.429
  22. Wargent JJ, Jordan BR. From ozone depletion to agriculture: understanding the role of UV radiation in sustainable crop production. New Phytol 2013;197:1058-76. https://doi.org/10.1111/nph.12132
  23. Park HW, In G, Han ST, Lee MW, Kim SY, Kim KT, Cho BG, Han GH, Chang IM. Simultaneous determination of 30 ginsenosides in Panax ginseng preparations using ultra performance liquid chromatography. J Ginseng Res 2013;37:457-67. https://doi.org/10.5142/jgr.2013.37.457
  24. Qu C, Bai Y, Jin X, Wang Y, Zhang K, You J, Zhang H. Study on ginsenosides in different parts and ages of Panax quinquefolius L. Food Chemistry 2009;115:340-6. https://doi.org/10.1016/j.foodchem.2008.11.079
  25. Govindaraghavan S. Multiple ginsenosides ratios pattern - a pointer to identify Panax ginseng root extracts adulterated with other plant parts? Fitoterapia 2017;121:64-75. https://doi.org/10.1016/j.fitote.2017.06.024
  26. Wu W, Lu Z, Teng Y, Guo Y, Liu S. Structural characterization of ginsenosides from flower buds of Panax ginseng by RRLC-Q-TOF MS. J Chromatogr Sci 2016;54:136-43.
  27. Kang OJ, Kim JS. Comparison of ginsenoside contents in different parts of Korean ginseng (Panax ginseng C.A. Meyer). Prev Nutr Food Sci 2016;21:389-92. https://doi.org/10.3746/pnf.2016.21.4.389
  28. Zhang YC, Li G, Jiang C, Yang B, Yang HJ, Xu HY, Huang LQ. Tissue-specific distribution of ginsenosides in different aged ginseng and antioxidant activity of ginseng leaf. Molecules 2014;19:17381-99. https://doi.org/10.3390/molecules191117381
  29. Kim GS, Lee SE, Noh HJ, Kwon H, Lee SW, Kim SY, Kim YB. Effects of natural bioactive products on the growth and ginsenoside contents of Panax ginseng cultured in an aeroponic system. J Ginseng Res 2012;36:430-41. https://doi.org/10.5142/jgr.2012.36.4.430
  30. Ren G, Chen F. Degradation of ginsenosides in American ginseng (Panax quinquefolium) extracts during microwave and conventional heating. J Agric Food Chem 1999;47:1501-5. https://doi.org/10.1021/jf980678m
  31. Chung I-M, Kim J-W, Seguin P, Jun Y-M, Kim S-H. Ginsenosides and phenolics in fresh and processed Korean ginseng (Panax ginseng C.A. Meyer): effects of cultivation location, year, and storage period. Food Chemistry 2012;130:73-83. https://doi.org/10.1016/j.foodchem.2011.06.056
  32. Xiao D, Yue H, Xiu Y, Sun X, Wang Y, Liu S. Accumulation characteristics and correlation analysis of five ginsenosides with different cultivation ages from different regions. Journal of Ginseng Research 2015;39:338-44. https://doi.org/10.1016/j.jgr.2015.03.004
  33. Lim W, Mudge KW, Vermeylen F. Effects of population, age, and cultivation methods on ginsenoside content of wild American ginseng (Panax quinquefolium). Journal of Agricultural and Food Chemistry 2005;53:8498-505. https://doi.org/10.1021/jf051070y
  34. Kim DH. Chemical diversity of Panax ginseng, Panax quinquifolium, and Panax notoginseng. J Ginseng Res 2012;36:1-15. https://doi.org/10.5142/jgr.2012.36.1.1
  35. Le TH, Lee GJ, Vu HK, Kwon SW, Nguyen NK, Park JH, Nguyen MD. Ginseng saponins in different parts of Panax vietnamensis. Chem Pharm Bull 2015;63:950-4. https://doi.org/10.1248/cpb.c15-00369
  36. Lee DG, Lee J, Cho IH, Kim HJ, Lee SW, Kim YO, Park CG, Lee S. Ginsenoside Rg12, a new dammarane-type triterpene saponin from Panax ginseng root. J Ginseng Res 2017;41:531-3. https://doi.org/10.1016/j.jgr.2016.10.002
  37. Zhu GY, Li YW, Hau DK, Jiang ZH, Yu ZL, Fong WF. Protopanaxatriol-type ginsenosides from the root of Panax ginseng. J Agric Food Chem 2011;59:200-5. https://doi.org/10.1021/jf1037932
  38. Wang HP, Yang XB, Yang XW, Liu JX, Xu W, Zhang YB, Zhang LX, Wang YP. Ginsenjilinol, a new protopanaxatriol-type saponin with inhibitory activity on LPS-activated NO production in macrophage RAW 264.7 cells from the roots and rhizomes of Panax ginseng. J Asian Nat Prod Res 2013;15:579-87. https://doi.org/10.1080/10286020.2013.787992
  39. Yoshikawa M, Sugimoto S, Nakamura S, Matsuda H. Medicinal flowers. XI. Structures of new dammarane-type triterpene diglycosides with hydroperoxide group from flower buds of Panax ginseng. Chem Pharm Bull 2007;55:571-6. https://doi.org/10.1248/cpb.55.571
  40. Lu D, Li P, Liu J. Quinquenoside F(6), a new triterpenoid saponin from the fruits of Panax quinquefolium L. Nat Prod Res 2012;26:1395-401. https://doi.org/10.1080/14786419.2011.592833
  41. Lee DY, Cha BJ, Lee YS, Kim GS, Noh HJ, Kim SY, Kang HC, Kim JH, Baek NI. The potential of minor ginsenosides isolated from the leaves of Panax ginseng as inhibitors of melanogenesis. Int J Mol Sci 2015;16:1677-90. https://doi.org/10.3390/ijms16011677
  42. Tung NH, Song GY, Park YJ, Kim YH. Two new dammarane-type saponins from the leaves of Panax ginseng. Chem Pharm Bull 2009;57:1412-4. https://doi.org/10.1248/cpb.57.1412
  43. Tung NH, Song G-Y, Kang H-K, Kim Y-H. New dammarane saponins from the steamed ginseng leaves. Bulletin of the Korean Chemical Society 2010;31:2094-6. https://doi.org/10.5012/bkcs.2010.31.7.2094
  44. Zhou QL, Yang XW. Four new ginsenosides from red ginseng with inhibitory activity on melanogenesis in melanoma cells. Bioorg Med Chem Lett 2015;25:3112-6. https://doi.org/10.1016/j.bmcl.2015.06.017
  45. Li SL, Lai SF, Song JZ, Qiao CF, Liu X, Zhou Y, Cai H, Cai BC, Xu HX. Decoctinginduced chemical transformations and global quality of Du-Shen-Tang, the decoction of ginseng evaluated by UPLC-Q-TOF-MS/MS based chemical profiling approach. J Pharm Biomed Anal 2010;53:946-57. https://doi.org/10.1016/j.jpba.2010.07.001
  46. Chen YJ, Zhang SL, Wang ZX, Lu YJ, Xu SX, Yao XS, Cui CB, Tezuka Y, Kikuchi T, Ogihara Y, et al. [Isolation and elucidation of a new minor saponin from the leaves of Panax ginseng C.A. Meyer]. Acta Pharmaceutica Sinica 1990;25:379-81.
  47. Ruan CC, Liu Z, Li X, Liu X, Wang LJ, Pan HY, Zhang YN, Sun GZ, Zhang YS, Zhang LX. Isolation and characterization of a new ginsenoside from the fresh root of Panax Ginseng. Molecules 2010;15:2319-25. https://doi.org/10.3390/molecules15042319
  48. Zhu GY, Li YW, Hau DK, Jiang ZH, Yu ZL, Fong WF. Acylated protopanaxadioltype ginsenosides from the root of Panax ginseng. Chem Biodivers 2011;8:1853-63. https://doi.org/10.1002/cbdv.201000196
  49. Yahara S, Tanaka O, Komori T. Saponins of the leaves of Panax ginseng C. A. Meyer. . Chem Pharm Bull 1976;24:2204-8. https://doi.org/10.1248/cpb.24.2204
  50. Li KK, Yang XB, Yang XW, Liu JX, Gong XJ. New triterpenoids from the stems and leaves of Panax ginseng. Fitoterapia 2012;83:1030-5. https://doi.org/10.1016/j.fitote.2012.05.013
  51. Kitagawa I, Taniyama T, Hayashi T, Yohikawa M. Malonyl-ginsenoside Rb1, Rb2, Rc, and Rd, four new malonylated dammarane-type triterpene oligoglycosides from ginseng radix. Chem Pharm Bull 1983;31:3353-6. https://doi.org/10.1248/cpb.31.3353
  52. Kasai R, Besso H, Tanaka O, Saruwatari YI, Fuwa T. Saponins of red ginseng. Chem Pharm Bull 1983;31:2120-5. https://doi.org/10.1248/cpb.31.2120
  53. Morita T, Kasai R, Kohida H, Tanaka O, Zhou J, Yang TR. Chemical and morphological study on Chinese Panax japonicus CA meyer (Zhujie-shen). Chem Pharm Bull 1983;31:3205-9. https://doi.org/10.1248/cpb.31.3205

Cited by

  1. Analysis of Ginsenoside Content (Panax ginseng) from Different Regions vol.24, pp.19, 2020, https://doi.org/10.3390/molecules24193491
  2. Advances in Saponin Diversity of Panax ginseng vol.25, pp.15, 2020, https://doi.org/10.3390/molecules25153452
  3. Analysis of ginseng root and leaf by multiple columns and detections liquid chromatography vol.43, pp.13, 2020, https://doi.org/10.1080/10826076.2020.1730890
  4. Two Key Amino Acids Variant of α-l-arabinofuranosidase from Bacillus subtilis Str. 168 with Altered Activity for Selective Conversion Ginsenoside Rc to Rd vol.26, pp.6, 2021, https://doi.org/10.3390/molecules26061733
  5. Spectroscopic and in silico investigation of the interaction between GH1 β‐glucosidase and ginsenoside Rb 1 vol.9, pp.4, 2020, https://doi.org/10.1002/fsn3.2153
  6. Application of Identification and Evaluation Techniques for Ethnobotanical Medicinal Plant of Genus Panax: A Review vol.51, pp.4, 2020, https://doi.org/10.1080/10408347.2020.1736506
  7. A comprehensive evaluation protocol for sulfur fumigation of ginseng using UPLC-Q-TOF-MS/MS and multivariate statistical analysis vol.145, 2020, https://doi.org/10.1016/j.lwt.2021.111293
  8. Evaluation of the Saponin Content in Panax vietnamensis Acclimatized to Lam Dong Province by HPLC-UV/CAD vol.26, pp.17, 2020, https://doi.org/10.3390/molecules26175373
  9. Predominance of oleanane-type ginsenoside R0 and malonyl esters of protopanaxadiol-type ginsenosides in the 20-year-old suspension cell culture of Panax japonicus C.A. Meyer vol.177, 2020, https://doi.org/10.1016/j.indcrop.2021.114417