DOI QR코드

DOI QR Code

Phylogenetic position of Daphne genkwa (Thymelaeaceae) inferred from complete chloroplast data

  • Received : 2021.05.06
  • Accepted : 2021.06.14
  • Published : 2021.06.30

Abstract

Daphne genkwa (Thymelaeaceae) is a small deciduous shrub widely cultivated as an ornamental. The complete chloroplast genome of this species is presented here. The genome is 132,741 bp long and has four subregions: 85,668 bp of large single-copy and 28,365 bp of small single-copy regions are separated by 9,354 bp of inverted repeat regions with 107 genes (71 protein-coding genes, four rRNAs, and 31 tRNAs) and one pseudogene. The phylogenetic tree shows that D. genkwa is nested within Wikstroemia and is not closely related to other species of Daphne, suggesting that it should be recognized as a species of Wikstroemia.

Keywords

Acknowledgement

The authors are grateful to two anonymous reviewers for their invaluable comments, to Hwa-Jung Suh and Dong-Hyuk Lee for their help in the fieldwork, and to Yun Gyeong Choi for the assistance of laboratory work. This work was supported by the National Institute of Biological Resources under grant NIBR202005201 and the National Research Foundation of Korea under grant NRF-2020R111A3068464.

References

  1. Cho, M.-S., Y. Kim, S.-C. Kim and J. Park. 2019. The complete chloroplast genome of Korean Pyrus ussuriensis Maxim. (Rosaceae): providing genetic background of two types of P. ussuriensis. Mitochondrial DNA Part B 4: 2424-2425. https://doi.org/10.1080/23802359.2019.1598802
  2. Domke, W. 1932. Zur Kenntnis einiger Thymelaeaceen. Notizblatt des Botanischen Gartens und Museums zu Berlin-Dahlem 11: 348-363. (in German) https://doi.org/10.2307/3994730
  3. Halda, J. J. 2001. The Genus Daphne. Sen, Dobre, 231 pp.
  4. Hamaya, T. 1955. A dendrological monograph of the Thymelaeaceae plants of Japan. Bulletin of Tokyo University Forest 50: 45-96.
  5. Heo, K.-I., J. Park, H. Xi and J. Min. 2020. The complete chloroplast genome of Agrimonia pilosa Ledeb. isolated in Korea (Rosaceae): investigation of intraspecific variations on its chloroplast genomes. Mitochondrial DNA Part B 5: 2264-2266. https://doi.org/10.1080/23802359.2020.1772144
  6. Jung, E.-H. and S.-P. Hong. 2003a. Pollen morphology of Thymelaeaceae in Korea. Korean Journal of Plant Taxonomy 33: 255-270. https://doi.org/10.11110/kjpt.2003.33.3.255
  7. Jung, E.-H. and S.-P. Hong. 2003b. The taxonomic consideration of leaf epidermal microstructure in Korean Thymelaeaceae Adans. Korean Journal of Plant Taxonomy 33: 421-433. https://doi.org/10.11110/kjpt.2003.33.4.421
  8. Kang, M.-J., S.-C. Kim, H.-R. Lee, S.-A. Lee, J.-W. Lee, T.-D. Kim and E.-J. Park. 2020. The complete chloroplast genome of Korean Gastrodia elata Blume. Mitochondrial DNA Part B 5: 1015-1016. https://doi.org/10.1080/23802359.2020.1721346
  9. Kumar, S., G. Stecher, M. Li, C. Knyaz and K. Tamura. 2018. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution 35: 1547-1549. https://doi.org/10.1093/molbev/msy096
  10. Kwon, W., Y. Kim and J. Park. 2019. The complete chloroplast genome of Korean Marchantia polymorpha subsp. ruderalis Bischl. & Boisselier: low genetic diversity between Korea and Japan. Mitochondrial DNA Part B 4: 959-960. https://doi.org/10.1080/23802359.2019.1579072
  11. Lee, J. 2015. Phylogenetic Systematics of Thymelaeaceae in Korea. MS thesis, Daejeon University, Daejeon, Korea, 105 pp.
  12. Lee, J.-J. and S.-H. Oh. 2017. A comparative morphological study of Thymelaeaceae in Korea. Korean Journal of Plant Taxonomy 47: 207-221. https://doi.org/10.11110/kjpt.2017.47.3.207
  13. Oh, S.-H. and H.-P. Hong. 2015. Thymelaeacae. In Flora of Korea. Vol. 5b. Rosidae: Elaeagnaceae to Sapindaceae. Park, C.-W. (ed.), National Institute of Biological Resources, Incheon. Pp. 16-21.
  14. Oh, S.-H., H. J. Suh, J. Park, Y. Kim and S. Kim. 2019a. The complete chloroplast genome sequence of a morphotype of Goodyera schlechtendaliana (Orchidaceae) with the column appendages. Mitochondrial DNA Part B 4: 626-627. https://doi.org/10.1080/23802359.2018.1564390
  15. Oh, S.-H., H. J. Suh, J. Park, Y. Kim and S. Kim. 2019b. The complete chloroplast genome sequence of Goodyera schlechtendaliana in Korea (Orchidaceae). Mitochondrial DNA Part B 4: 2692-2693. https://doi.org/10.1080/23802359.2019.1641439
  16. Ohwi, J. 1965. Flora of Japan. Smithsonian Institution, Washington DC, 1067 pp.
  17. Park, J., Y. Bae, B.-Y. Kim, G.-H. Nam, J.-M. Park, B.-Y. Lee, H.- J. Suh and S.-H Oh, 2021b. The complete chloroplast genome of Campanula takesimana Nakai from Dokdo Island in Korea (Campanulaceae). Mitochondrial DNA Part B 6: 135-137. https://doi.org/10.1080/23802359.2020.1851157
  18. Park, J., Y. Kim, H. Xi, Y. J. Oh, K. M. Hahm and J. Ko. 2019. The complete chloroplast genome of common camellia tree, Camellia japonica L. (Theaceae), adapted to cold environment in Korea. Mitochondrial DNA Part B 4: 1038-1040. https://doi.org/10.1080/23802359.2019.1580164
  19. Park, J., J. Min, Y. Kim and Y. Chung. 2021a. The comparative analyses of six complete chloroplast genomes of morphologically diverse Chenopodium album L. (Amaranthaceae) collected in Korea. International Journal of Genomics 2021: 6643444.
  20. Park, J. and S.-H. Oh. 2020. A second complete chloroplast genome sequence of Fagus multinervis Nakai (Fagaceae): intraspecific variations on chloroplast genome. Mitochondrial DNA Part B 5: 1868-1869. https://doi.org/10.1080/23802359.2020.1752837
  21. Park, J., Y. Suh and S. Kim. 2020a. A complete chloroplast genome sequence of Gastrodia elata (Orchidaceae) represents high sequence variation in the species. Mitochondrial DNA Part B 5: 517-519. https://doi.org/10.1080/23802359.2019.1710588
  22. Park, J., H. Xi and Y. Kim. 2020b. The complete chloroplast genome of Arabidopsis thaliana isolated in Korea (Brassicaceae): an investigation of intraspecific variations of the chloroplast genome of Korean A. thaliana. International Journal of Genomics 2020: 3236461.
  23. Park, J., H. Xi and S.-H. Oh. 2020c. Comparative chloroplast genomics and phylogenetic analysis of the Viburnum dilatatum complex (Adoxaceae) in Korea. Korean Journal of Plant Taxonomy 50: 8-16. https://doi.org/10.11110/kjpt.2020.50.1.8
  24. Ronquist, F., M. Teslenko, P. Van Der Mark, D. L. Ayres, A. Darling, S. Hohna, B. Larget, L. Liu, M. A. Suchard and J. P. Huelsenbeck. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539-542. https://doi.org/10.1093/sysbio/sys029
  25. Shimodaira, H. 2002. An approximately unbiased test of phylogenetic tree selection. Systematic Biology 51: 492-508. https://doi.org/10.1080/10635150290069913
  26. Shimodaira, H. and M. Hasegawa. 1999. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Molecular Biology and Evolution 16: 1114-1116. https://doi.org/10.1093/oxfordjournals.molbev.a026201
  27. Swofford, D. L. 2002. PAUP* Phylogenetic analysis using parsimony (* and other methods), version 4.0. Sinauer Associates, Sunderland, MA.
  28. Wang, Y., M. G. Gilbert, B. Mathew, C. D. Brickell and L. I. Nevling. 2007. Thymelaeaceae. In Flora of China. Vol. 13. Clusiaceae through Araliaceae. Wu, Z. Y., P. H. Raven and D. Y. Hong (eds.), Science Press, Beijing and Missouri Botanical Garden, St. Louis, MO. Pp. 213-250.
  29. White, R. 2006. Daphnes: a Practical Guide for Gardeners. Timber Press, Portland, OR, 232 pp.

Cited by

  1. Genome-wide comparative analyses of GATA transcription factors among seven Populus genomes vol.11, pp.1, 2021, https://doi.org/10.1038/s41598-021-95940-5