DOI QR코드

DOI QR Code

Cyclic behavior of an energy dissipation semi-rigid moment steel frames (SMRF) system with LYP steel curved dampers

  • Rousta, Ali Mohammad (Department of Civil Engineering, Yasouj University) ;
  • Shojaeifar, Hamid (Department of Civil Engineering, Faculty of Maragheh, Maragheh Branch, Technical and Vocational University (TUV)) ;
  • Azandariani, Mojtaba Gorji (Structural Engineering Division, Faculty of Civil Engineering, Semnan University) ;
  • Saberiun, Sajad (Department of Civil Engineering, Faculty of Hamedan, Hamedan Branch, Technical and Vocational University (TUV)) ;
  • Abdolmaleki, Hamid (Department of Civil Engineering, Tuyserkan Branch, Islamic Azad University)
  • Received : 2021.05.03
  • Accepted : 2021.07.29
  • Published : 2021.10.25

Abstract

The use of displacement-dependent steel curved dampers as fuse or interchangeable element in the beam-to-column connection region is one of the newest methods for improving the seismic performance of semi-rigid moment steel frames (SRMF). In the present study, performance of low-yield strength curved dampers in MRSF has been investigated. These dampers are inactive and install in the beam-to-column connection region. Variable parameters of this study involve the damper width (75, 100 and 125 mm), damper thickness (10, 15, 20, 25 and 30 mm) and the damper steel type (SN400YB and LY160). Evaluation of MRSF models were performed using finite element method by ABAQUS. For validation, a MRSF with curve dampers was modeled that had been experimentally tested and reported in previous experimental research and a good agreement was observed. The results show that the use of low-yield strength steel in curved steel dampers, depending on the damper thickness, can lead to an increase in the hysteresis equivalent damping ratio, ductility parameter and total energy dissipated compared to the steel with higher yield stress.

Keywords

References

  1. ABAQUS-6.10 (2010), Standard User's Manual, Hibbitt, Karlsson and Sorensen, Inc.
  2. Ali, M.M., Osman, S.A., Husam, O.A. and Al-Zand, A.W. (2018), "Numerical study of the cyclic behavior of steel plate shear wall systems (SPSWs) with differently shaped openings", Steel Compos. Struct., 26(3), 361-373. https://doi.org/10.12989/scs.2018.26.3.361.
  3. ATC-24 (1992), Guidelines for Cyclic Seismic Testing of Components of Steel Structures.
  4. Benavent-Climent, A. (2010), "A brace-type seismic damper based on yielding the walls of hollow structural sections", Eng. Struct., 32(4), 1113-1122. https://doi.org/10.1016/j.engstruct.2009.12.037.
  5. Chen, Y.T. and Chai, Y.H. (2011), "Effects of brace stiffness on performance of structures with supplemental Maxwell model-based brace-damper systems", Earthq. Eng. Struct. Dyn., 40(1), 75-92. https://doi.org/10.1002/eqe.1023.
  6. Chopra, A.K. (2012), Dynamics of Structures: Theory and Applications to Earthquake Engineering, 4nd Edition, Englewood Cliffs, Prentice Hall.
  7. El-Bahey, S. and Bruneau, M. (2011), "Buckling restrained braces as structural fuses for the seismic retrofit of reinforced concrete bridge bents", Eng. Struct., 33(3), 1052-1061. https://doi.org/10.1016/j.engstruct.2010.12.027.
  8. Eldin, M.N., Kim, J. and Kim, J. (2018), "Optimum distribution of steel slit-friction hybrid dampers based on life cycle cost", Steel Compos. Struct., 27(5), 633-646. https://doi.org/10.12989/scs.2018.27.5.633.
  9. FEMA 356 (2000), Federal Emergency Management Agency, Prestandard and Commentary for the Seismic Rehabilitation of Buildings.
  10. Girao Coelho, A.M., Da Silva, L.S. and Bijlaard, F.S.K. (2006), "Ductility analysis of bolted extended end plate beam-to-column connections in the framework of the component method", Steel Compos. Struct., 6(1), 33-53. https://doi.org/10.12989/scs.2006.6.1.033.
  11. Gorji Azandariani, M., Abdolmaleki, H. and Gorji Azandariani, A. (2020a), "Numerical and analytical investigation of cyclic behavior of steel ring dampers (SRDs)", Thin Wall. Struct., 151, 106751. https://doi.org/10.1016/j.tws.2020.106751.
  12. Gorji Azandariani, M., Gholhaki, M. and Kafi, M.A. (2020b), "Experimental and numerical investigation of low-yield-strength (LYS) steel plate shear walls under cyclic loading", Eng. Struct., 203, 109866. https://doi.org/10.1016/j.engstruct.2019.109866.
  13. Gorji Azandariani, M., Gholhaki, M. and Kafi, M.A. (2021a), "Hysteresis finite element model for evaluation of cyclic behavior and performance of steel plate shear walls (SPSWs)", Struct., 29, 30-47. https://doi.org/10.1016/j.istruc.2020.11.009.
  14. Gorji Azandariani, M., Gorji Azandariani, A. and Abdolmaleki, H. (2020c), "Cyclic behavior of an energy dissipation system with steel dual-ring dampers (SDRDs)", J. Constr. Steel Res., 172, 106145. https://doi.org/10.1016/j.jcsr.2020.106145.
  15. Gorji Azandariani, M., Kafi, M.A. and Gholhaki, M. (2021b), "Innovative hybrid linked-column steel plate shear wall (HLCS) system: Numerical and analytical approaches", J. Build. Eng., 43, 102844. https://doi.org/10.1016/j.jobe.2021.102844.
  16. Gorji Azandariani, M., Rousta, A.M., Usefvand, E., Abdolmaleki, H. and Gorji Azandariani, A. (2021c), "Improved seismic behavior and performance of energy-absorbing systems constructed with steel rings", Struct., 29, 534-548. https://doi.org/10.1016/j.istruc.2020.11.041.
  17. Hsu, H.L. and Halim, H. (2017), "Improving seismic performance of framed structures with steel curved dampers", Eng. Struct., 130, 99-111. https://doi.org/10.1016/j.engstruct.2016.09.063.
  18. Hsu, H.L. and Li, Z.C. (2015), "Seismic performance of steel frames with controlled buckling mechanisms in knee braces", J. Constr. Steel Res., 107, 50-60. https://doi.org/10.1016/j.jcsr.2015.01.010.
  19. Iqbal, W., Jalil, M., Khadimallah, M.A., Ayed, H., Naeem, M.N., Hussain, M., Bouzgarrou, S.M., Mahmoud, S.R., Ghandourah, E., Taj, M. and Tounsi, A. (2020), "Runge-Kutta method for flow of dusty fluid along exponentially stretching cylinder", Steel Compos. Struct., 36(5), 603. https://doi.org/10.12989/SCS.2020.36.5.603.
  20. Javidan, M.M. and Kim, J. (2020), "Steel hysteretic column dampers for seismic retrofit of soft-first-story structures", Steel Compos. Struct., 37(3), 259-272. https://doi.org/10.12989/scs.2020.37.3.259.
  21. Javidan, M.M., Nasab, M.S.E. and Kim, J. (2021), "Full-scale tests of two-story RC frames retrofitted with steel plate multi-slit dampers", Steel Compos. Struct., 39(5), 645-664. https://doi.org/10.12989/scs.2021.39.5.645.
  22. Kang, J.D. and Tagawa, H. (2013), "Seismic performance of steel structures with seesaw energy dissipation system using fluid viscous dampers", Eng. Struct., 56, 431-442. https://doi.org/10.1016/j.engstruct.2013.05.015.
  23. Karimian, A., Armaghani, A. and Behravesh, A. (2019), "Performance of low-yield strength plates in beam-column connections against progressive collapse", KSCE J. Civil Eng., 23(1), 335-345. https://doi.org/10.1007/s12205-018-0653-y.
  24. Kasaeian, S., Usefi, N., Ronagh, H. and Dareshiry, S. (2020), "Seismic performance of CFS strap-braced walls using capacity-based design approach", J. Constr. Steel Res., 174, 106317. https://doi.org/10.1016/j.jcsr.2020.106317.
  25. Kim, J., Kim, M. and Eldin, M.N. (2017), "Optimal distribution of steel plate slit dampers for seismic retrofit of structures", Steel Compos. Struct., 25(4), 473-484. https://doi.org/10.12989/scs.2017.25.4.473.
  26. Lor, H.A., Izadinia, M. and Memarzadeh, P. (2019), "Experimental evaluation of steel connections with horizontal slit dampers", Steel Compos. Struct., 32(1), 79-90. https://doi.org/10.12989/scs.2019.32.1.079.
  27. Ma, H., Jiang, W. and Cho, C. (2011), "Experimental study on two types of new beam-to-column connections", Steel Compos. Struct., 11(4), 291-305. https://doi.org/10.12989/scs.2011.11.4.291.
  28. Mele, E., Calado, L. and De Luca, A. (2001), "Cyclic behaviour of beam-to-column welded connections", Steel Compos. Struct., 1(3), 269-282. https://doi.org/10.12989/scs.2001.1.3.269.
  29. Mohajeri Nav, F., Abbasnia, R., Rashidian, O. and Usefi, N. (2016), "Theoretical resistance of RC Frames under the column removal scenario considering high strain rates", J. Perform. Constr. Facil., 30(5), 04016025. https://doi.org/10.1061/(asce)cf.1943-5509.0000867.
  30. Mohammadi, M., Kafi, M.A., Kheyroddin, A. and Ronagh, H.R. (2019), "Experimental and numerical investigation of an innovative buckling-restrained fuse under cyclic loading", Struct., 22, 186-199. https://doi.org/10.1016/j.istruc.2019.07.014.
  31. Mohammadi, M., Kafi, M.A., Kheyroddin, A. and Ronagh, H.R. (2020), "Performance of innovative composite buckling-restrained fuse for concentrically braced frames under cyclic loading", Steel Compos. Struct., 36(2), 163-177. https://doi.org/10.12989/SCS.2020.36.2.163.
  32. Mohebkhah, A. and Azandariani, M.G. (2015), "Lateral-torsional buckling of Delta hollow flange beams under moment gradient", Thin Wall. Struct., 86, 167-173. https://doi.org/10.1016/j.tws.2014.10.011.
  33. Mohebkhah, A. and Azandariani, M.G. (2016), "Lateral-torsional buckling resistance of unstiffened slender-web plate girders under moment gradient", Thin Wall. Struct., 102, 215-221. https://doi.org/10.1016/j.tws.2016.02.001.
  34. Mohebkhah, A. and Azandariani, M.G. (2020), "Shear resistance of retrofitted castellated link beams: Numerical and limit analysis approaches", Eng. Struct., 203, 109864. https://doi.org/10.1016/j.engstruct.2019.109864.
  35. Piedrafita, D., Cahis, X., Simon, E. and Comas, J. (2013), "A new modular buckling restrained brace for seismic resistant buildings", Eng. Struct., 56, 1967-1975. https://doi.org/10.1016/j.engstruct.2013.08.013.
  36. Pucinotti, R. (2006), "Cyclic mechanical model of semirigid top and seat and double web angle connections", Steel Compos. Struct., 6(2), 139-157. https://doi.org/10.12989/scs.2006.6.2.139.
  37. Roeder, C.W.C. and Popov, E.E.P. (1977), "Inelastic behavior of eccentrically braced steel frames under cyclic loadings", NASA STI/Recon Tech. Rep. N, 78, 20375.
  38. Shojaeifar, H., Maleki, A. and Lotfollahi-Yaghin, M.A. (2020), "Performance evaluation of curved-TADAS damper on seismic response of moment resisting steel frame", Int. J. Eng. Tran. A Bas., 33(1), 55-67. https://doi.org/10.5829/ije.2020.33.01a.07.
  39. Talebizadehsardari, P., Eyvazian, A., Gorji Azandariani, M., Nhan Tran, T., Kumar Rajak, D. and Babaei Mahani, R. (2020), "Buckling analysis of smart beams based on higher order shear deformation theory and numerical method", Steel Compos. Struct., 35(5), 635-640. https://doi.org/10.12989/scs.2020.35.5.635.
  40. Usefi, N., Nav, F.M. and Abbasnia, R. (2016), "Finite element analysis of RC elements in progressive collapse scenario", 68(12), 1009-1022. https://doi.org/10.14256/JCE.1550.2016.
  41. Usefi, N. and Ronagh, H. (2020), "Seismic characteristics of hybrid cold-formed steel wall panels", Struct., 27, 718-731. https://doi.org/10.1016/j.istruc.2020.06.033.
  42. Usefi, N., Ronagh, H. and Sharafi, P. (2020), "Lateral performance of a new hybrid CFS shear wall panel for midriseconstruction", J. Constr. Steel Res., 168, 106000. https://doi.org/10.1016/j.jcsr.2020.106000.
  43. Xu, L., Li, Z. and Lv, Y. (2014), "Nonlinear seismic damage control of steel frame-steel plate shear wall structures using MR dampers", Earthq. Struct., 7(6), 937-953. https://doi.org/10.12989/eas.2014.7.6.937.