DOI QR코드

DOI QR Code

Analysis of Plants Social Network for Vegetation Management on Taejongdae in Busan Metropolitan City

부산 태종대 식생관리를 위한 식물사회네트워크 분석

  • Sang-Cheol Lee (Applied Ecology Lab., Pusan National Univ.) ;
  • Hyun-Mi Kang (Dept. of Landscape Architecture, Mokpo National Univ.) ;
  • Seok-Gon Park (Sunchon National Univ.) ;
  • Jae-Bong Baek (Dept. of Landscape Architecture, Pusan National Univ.) ;
  • Chan-Yeol Yu (Forest Research Department, Gyeongsangnam-do Forest Environment Research Institute) ;
  • In-Chun Hwang (Korea Environmental Research ) ;
  • Song-Hyun Choi (Dept. of Landscape Architecture, Pusan National Univ.)
  • 이상철 (부산대학교 응용생태연구실) ;
  • 강현미 (국립목포대학교 조경학과 ) ;
  • 박석곤 (국립순천대학교 산림자원.조경학과 ) ;
  • 백재봉 (부산대학교 조경학과) ;
  • 유찬열 (경남산림환경연구원 산림연구과) ;
  • 황인천 (한국환경기술개발(주) ) ;
  • 최송현 (부산대학교 조경학과 )
  • Received : 2022.09.06
  • Accepted : 2022.11.08
  • Published : 2022.12.31

Abstract

Plants social network analysis, which combines plants society and social network analyses, is a new research method for understanding plants society. This study was conducted to investigate the relationship between species, using plant social network analysis targeting Taejongdae in Busan, and build basic data for management. Taejongdae, located in the warm temperate forest in Korea, is a representative coastal forest of Busan Metropolitan City, and the Pinus thunbergii-Eurya japonicacommunity is widely distributed. This study set up 100 quadrats (size of 100m2each) in Taejongdae to investigate the species that emerged and analyzed the interspecies association focusing on major species. Based on the results, a sociogram was created using the Gephi 0.9.2, and the network centrality and structure were analyzed. The results showed that the frequency of appearance was high in the order of P. thunbergii, E. japonica, Quercus serrata, Sorbus alnifolia, Ligustrum japonicum, and Styrax japonicusand that many evergreen broad-leaved trees appeared due to the environmental characteristics of the site. The plants social network of Taejongdae was composed of a small-scale network with 50 nodes and 172 links and was divided into 4 groups through modularization. The succession sere identified through a sociogram confirmed that the group that include P. thunbergiiand E. japonicawould progress to a deciduous broadleaf community dominated by Q. serrataand Carpinus tschonoskii, using hub nodes such as Prunus serrulataf. spontaneaand Toxicodendron trichocarpum. Another succession sere was highly likely to progress to an evergreen broad-leaved community dominated by Machilus thunbergiiand Neolitsea sericea, using M. thunbergiias a medium. In some areas, a transition to a deciduous broad-leaved community dominated by Celtis sinensis, Q. variabilisand Zelkova serratausing Lindera obtusilobaand C. sinensisas hub nodes was expected.

식물사회를 이해하기 위한 새로운 방법으로 식물사회와 사회 연결망 분석을 결합한 식물사회네트워크 분석이 시도되고 있다. 본 연구는 부산 태종대를 대상으로 식물사회네트워크 분석을 활용하여 종간 관계를 살펴보고 이를 관리에 활용하기 위한 기초자료 구축의 목적으로 수행하였다. 우리나라 난온대림에 위치한 태종대는 부산광역시의 대표적인 해안림으로 곰솔-사스레피나무군락이 폭넓게 분포하고 있다. 태종대를 대상으로 100m2 크기의 방형구 100개소를 설치하여 출현수종을 조사하였고, 주요 종을 중심으로 종간결합 분석을 실시하였다. 그 결과를 바탕으로 Gephi 0.9.2를 활용하여 소시오그램을 작성하였으며, 네트워크 중심성 및 구조를 분석하였다. 연구결과, 곰솔, 사스레피나무, 졸참나무, 팥배나무, 광나무, 때죽나무 순으로 출현빈도가 높았으며, 대상지의 환경적 특성상 상록활엽수가 다수 출현하였다. 태종대 식물 사회네트워크는 노드수가 50개, 연결정도가 172개의 소규모 네트워크로 구축되었으며, 모듈화를 통해 4개그룹으로 나누어졌다. 구축된 소시오그램을 통해 천이계열을 살펴보면, 현재 곰솔, 사스레피나무가 포함된 그룹은 벚나무, 개옻나무를 매개자로 하여 졸참나무, 개서어나무가 우점하는 낙엽활엽수군락으로, 후박나무를 매개자로 하여 후박나무, 참식나무가 우점하는 상록활엽수군락으로 천이될 가능성이 높았고, 일부지역에서는 생강나무, 팽나무를 매개자로 하여 팽나무, 굴참나무, 느티나무가 우점하는 낙엽활엽수군락으로 천이가 예상된다.

Keywords

Acknowledgement

이 논문은 부산대학교 기본연구지원사업(2년)에 의하여 연구되었음.

References

  1. Agnew, A.D.Q.(1961) The Ecology of Juncus effusus L. in North Wales. Journal of Ecology 49(1): 83-102. (in English) https://doi.org/10.2307/2257425
  2. Bonacich, P.(1987) Power and Centrality: A Family of Measures. American Journal of Sociology 92: 1170-1182. (in English) https://doi.org/10.1086/228631
  3. Brandes, U.(2001) A Faster Algorithm for Betweenness Centrality. Journal of Mathematical Sociology 25: 163-1773. https://doi.org/10.1080/0022250X.2001.9990249
  4. Byeon, S.Y. and C.W. Yun(2017) Classification of Community Type by Physiognomy Dominant Species, Floristic Composition and Interspecific Association of Forest Vegetation in Mt. Oseosan. J. Korean For. Soc. 106(2): 169-185. (in Korean with English abstract)
  5. Cole, L.C.(1949) The measurement of interspecific association. Journal of Ecology 30(4): 411-424. https://doi.org/10.2307/1932444
  6. Connor, E.F. and D. Simberloff(1983) Interspcific competition and species' co-occurrence patterns on islands: Null models and the evaluation of evidence. Oikos 41(3): 455-465. (in English) https://doi.org/10.2307/3544105
  7. De Vries, D., J. Baretta and G. Hamming(1954) Constellation of frequent herbage plants, based on their correlation in occurrence. Vegetatio 105-111.
  8. Freeman, L.C.(1978) Centrality in social networks conceptual clarification. Social Networks 1(3): 215-239. (in English) https://doi.org/10.1016/0378-8733(78)90021-7
  9. Gitay, H. and A.D.Q. Agnew(1989) Plant Community Structure, Connectance, Niche Limitation and Species Guilds within a Dune Slack Grassland. Vegetatio 83: 241-248. (in English) https://doi.org/10.1007/BF00031696
  10. Greig-Smith, P.(1983) Quantitative Plant Ecology(3rd ed.). Blackwell Scientific Pub., Oxford, U.K., 359pp.
  11. Jang, J.E., S.C. Lee, H.M. Kang, S.B. Yu, H.S. Shin and S.H. Choi(2021) The Plants Social Network through the Analysis of the Plant Community Structure and the Social Network-Conducted in Mudeungdan National Park-. Korean J. Environ. Ecol. 35(2): 164-180. (in Korean with English abstract) https://doi.org/10.13047/KJEE.2021.35.2.164
  12. Jang, S.H. and S.H. Jang(2009) A Framework for Visualizing Social Network Influence. Journal of Korea Multimedia Society 12(1): 139-146. (in Korean with English abstract)
  13. Kim J.Y.(2012) Actual Vegetation and Structure of Plant Community of Forest Ecosystem in Taejongdae, Busan City, Korea. Korean J. Environ. Ecol. 26(3): 426-436. (in Korean with English abstract)
  14. Kim S.H. and S.H. Choi(2007) The Structure and Ecological Characteristics of Coastal Forest in Busan Metropolitan City. Korea. Korean J. Environ. Ecol. 21(1): 67-73. (in Korean with English abstract)
  15. Kim, J.W. and B.C. Eom(2017) In the Homotoneity of Species Composition in the Phytosociologically Synthesized Community Tables. Korean J. Environ. Ecol. 31(5): 433-443. (in Korean with English abstract) https://doi.org/10.13047/KJEE.2017.31.5.433
  16. Kim, J.W.(2006) Vegetation Ecology. Worldscience Publications, Seoul, 340pp. (in Korean)
  17. Kim, K.W., K.J. Lee, J.W. Choi, J.H. Yeum and I.S. Ahn(2014) A Study on Vegetation Structure of Cultural Landscape Forest of Dongbaek Island, Busan. Korean J. Environ. Ecol. 28(2): 205-214. (in Korean with English abstract) https://doi.org/10.13047/KJEE.2014.28.2.205
  18. Kim, S.H. and R.S. Chang(2010) The Study on the Research Trend of Social Network Analysis and the its Applicability to Information Science. Journal of the Korean society for Information Management 27(4): 71-87. (in Korean with English abstract) https://doi.org/10.3743/KOSIM.2010.27.4.071
  19. Kim, Y.S. and D.G. Kim(2017) A Theoretical Review on the Planting and Management of Coastal Forests in Korea. Korean J. Plant Res. 30(1): 110-123. (in Korean with English abstract) https://doi.org/10.7732/kjpr.2016.30.1.110
  20. Ko, S.Y., S.H. Han, W.H. Lee, S.H. Han, H.S. Shin and C.W. Yun(2014) Forest Vegetation Classification and Quantitative Analysis of Picea jezoensis and Abies hollophylla stand in Mt. Gyebang. Korean J. Environ. Ecol. 28(2): 182-196. (in Korean with English abstract) https://doi.org/10.13047/KJEE.2014.28.2.182
  21. Lee J.Y.(2006) Centrality Measures for Bibliometric Network Analysis. Journal of the Korean Society for Library and Information Science 40(3): 191-214. https://doi.org/10.4275/KSLIS.2006.40.3.191
  22. Lee, H.Y., H.J. Kim, H.S. Shin, S.H. Han, S.Y. Ko, J.H. Song, J.H. Lee, K.H. Jang and C.W. Yun(2014) Community Structure of Pinus densiflora and Quercus mongolica forest in Jochimryeong to Shinbaeryeong of the Baekdudaegan. J. Korean For. Soc. 103(3): 339-352. (in Korean with English abstract) https://doi.org/10.14578/jkfs.2014.103.3.339
  23. Lee, J.H. and B.H. Choi(2010) Distribution and Northernmost Limit on the Korean Peninsula of Three Evergreen Trees. Korean J. Pl. Taxon. 40(4): 267-273. (in Korean with English abstract) https://doi.org/10.11110/kjpt.2010.40.4.267
  24. Lee, S.C.(2018) A study of ecological planting model based on vegetation structure and plants social network analysis in urban forest. Ph.D. Dissertation, Pusan National Univ., 267pp. (in Korean with English abstract)
  25. Lee, S.C., S.H. Choi and W. Cho(2020) A Study of Visualization and Analysis Method about Plants Social Network Used for Planting Design-Focusing on Forest Vegetation Area in Busan Metropolitan City-. Korean J. Environ. Ecol. 34(3): 260-271. (in Korean with English abstract)
  26. Lee, S.S.(2010) Network Analysis Methodology. Nonhyung Publications, Seoul, 370pp.(in Korean)
  27. Lee, Y.H., Y.J. Oh, W.J. Lee, C.S. Na, K.O. Kim and S.H. Hong(2016) Phytosociological Classification of Coastal Vegetation in Korea. Korean J. Environ. Biol. 34(1): 41-47. (in Korean with English abstract) https://doi.org/10.11626/KJEB.2016.34.1.041
  28. Losapio, G. and C. Schob(2017) Resistance of plant-plant networks to biodiversity loss and secondary extinctions following simulated environmental changes. Functional Ecology 31(5): 1145-1152. https://doi.org/10.1111/1365-2435.12839
  29. Ludwig, J.A. and J.F. Reynolds(1988) Statistical Ecology. John Wiley and Sons, New York, 337pp.
  30. Moreno, J.(1934) Who Shall Survive? New York, Beacon Press, 755pp.
  31. Ohashi, H., Y. Sasaki and K. Ohashi(2006) The northernmost limit of distribution of Quercus acuta Thunb. (Fagaceae). J. Jpn. Bot. 81(3): 173-187. (in Japenese)
  32. Park, S.G., S.H. Choi and S.C. Lee(2018) A Review of Vegetation Succession in Warm-Temperate Evergreen Broad-Leaved Forests-Focusing on Actinodaphne lancifolia Community-. Korean J. Environ. Ecol. 32(1): 77-96. (in Korean with English abstract) https://doi.org/10.13047/KJEE.2018.32.1.77
  33. Peter, A. and B. Shneiderman(2006) Balancing systematic and flexible exploration of social networks. IEEE Transactions on Visualization and Computer Graphics 12(5): 693-700. (in English) https://doi.org/10.1109/TVCG.2006.122
  34. Pielou, E.C.(1977) Mathematical Ecology. John Wiley and Sons, New York, 377pp.
  35. Schluter, D.(1984) A variance test for detecting species associations, with some example applications. Ecology 65: 998-1005. https://doi.org/10.2307/1938071
  36. Scott, J.(2000) Social Network Analysis: A Hand book. SAGE Publications, London, 208pp.
  37. Shin, H.S., S.C. Lee, S.H. Choi and H.M. Kang(2019) Ecological Characteristic and Vegetation Structure of Pinus thunbergii Community in Coastal Forest of Busan Metropolitan City, Korea. Korean J. Environ. Ecol. 33(5): 539-551. (in Korean with English abstract) https://doi.org/10.13047/KJEE.2019.33.5.539
  38. Sohn, D.W.(2002) Social Network Analysis. Kyungmoonsa Publications, Seoul, 254pp. (in Korean)