Thermotropic Liquid Crystalline Properties of Cholesteryloxycarbonated and (Cholesteryloxycarbonyl) alkanoated Celluloses

콜레스테릴옥시카본화 그리고 (콜레스테릴옥시카보닐)알카노화 셀룰로오스들의 열방성 액정 특성

  • Jeong, Seung-Yong (Department of Polymer Science and Engineering, Dankook University) ;
  • Ma, Yung-Dae (Department of Polymer Science and Engineering, Dankook University)
  • 정승용 (단국대학교 고분자공학과) ;
  • 마영대 (단국대학교 고분자공학과)
  • Published : 2008.03.31

Abstract

The thermal and optical properties of cellulose tri(cholesteryloxy) carbonate(CCE0) and cellulose tri(cholesteryloxycarbonyl)alkanoates (CCEn, n=$2{\sim}8$, 10, the number of methylene units in the spacer) were investigated. CCE0 formed an enantiotropic cholesteric phase, whereas all the CCEn exhibited monotropic cholesteric phases. CCEn with n=$3{\sim}8$ formed cholesteric phases with left-handed helical structures whose optical pitches (${\lambda}_m's$) decrease with increasing temperature. On the other hand, CCE0 and CCEn with n=2 or 10 did not display reflection colors over the full cholesteric range, suggesting that the helical twisting power of the cholesteryl group highly depends on the length of the spacer connecting the cholesteryl group to the main chain. The thermal stability and degree of order in the mesophase and the temperature dependence of the ${\lambda}_m$ observed for CCEn highly depended on n. The results were discussed in terms of the differences in the internal plasticization, the arrangement of the side groups, and the conformation of the molecules.

셀룰로오스 트리콜레스테릴옥시카보네이트(CCE0)와 셀룰로오스 트리(콜레스테릴옥시카보닐)알카노에이트들(CCEn, $n=2{\sim}8$,10, 스페이서중의 메틸렌 단위들의 수)의 열 및 광학 특성을 검토하였다. CCE0는 쌍방성 콜레스테릭 상을 형성하는 반면 모든 CCEn은 단방성 콜레스테릭 상들을 형성하였다. $n=3{\sim}8$인 CCEn은 온도상승에 의해 광학피치들(${\lambda}_m's$)이 감소하는 좌측방향의 나선구조를 지닌 콜레스테릭 상들을 형성하였다. 한편, CCE0 그리고 n=2 혹은 10인 CCEn은 콜레스테릭 상의 전 범위에서 반사색깔을 나타내지 않았다. 이러한 사실은 콜레스테릴 그룹에 의한 나선의 비틀림력은 콜레스테릴 그룹과 주사슬을 연결하는 스페이서의 길이에 민감하게 의존함을 시사한다. CCEn에서 관찰되는 액정 상의 열적 안정성과 질서도 그리고 ${\lambda}_m$의 온도의존성은 n에 민감하게 의존하였다. 이들의 결과를 주사슬의 가소화, 곁사슬 그룹의 배열 그리고 분자들의 입체형태의 차이들의 견지에서 검토하였다.

Keywords

References

  1. C. Noel, Liquid Crystal Polymers: From Structure to Applications, A. A. Collyer, Editor, Elservier Applied Science, Chap. 2, p 31 (1992)
  2. B. Reck and H. Ringsdorf, Makromol. Chem. Rapid Commun., 6, 291 (1985) https://doi.org/10.1002/marc.1985.030060414
  3. V. Percec and C. Pugh, Side Chain Liquid Crystal Polymers, C. B. McArdle, Editor, Chapman and Hall, New York, Chap. 3, p 30 (1989)
  4. R. Zentel, Handbook of Liquid Crystals, D. Demus, J. Goodby, G. W. Gray, H.-W. Spiess, and V. Vill, Editors, Willey-VCH, Weinheim-New York, Vol 3, Chap. I, p 52 (1998)
  5. V. Percec, A. D. Asandei, D. H. Hill, and D. Crawford, Macromolecules, 32, 6485 (1999) https://doi.org/10.1021/ma990348i
  6. J. J. Ge, A, Zhang, K. W. McCreight, R.-M. Ho, S.-Y. Wang, X. Jin, F. W. Harris, and S. Z. D. Cheng, Macromolecules, 30, 6498 (1997) https://doi.org/10.1021/ma970611k
  7. X. L. Piao, J.-S. Kim, Y.-K. Yun, J.-I. Jin, and S.-K. Hong, Macromolecules, 30, 2294 (1997) https://doi.org/10.1021/ma961649k
  8. J.-W. Lee, J.-I. Jin, B.-W. Jo, J.-S. Kim, W.-C. Zin, and Y.-S. Kang, Acta Polym., 50, 399 (1999) https://doi.org/10.1002/(SICI)1521-4044(19991201)50:11/12<399::AID-APOL399>3.0.CO;2-7
  9. J.-W. Lee and J.-I. Jin, Bull. Korean Chem. Soc., 21, 957 (2000)
  10. S. W. Cha, J.-I. Jin, D.-C. Kim, and W.-C. Zin, Macromolecules, 34, 5342 (2001) https://doi.org/10.1021/ma001861v
  11. Y.-W. Kwon, D. H. Choi, and J.-I. Jin, Polymer(Korea), 29, 523 (2005)
  12. M. Sato, M. Hayakawa, K. Nakagawa, K.-I. Mukaida, and H. Fujiwara, Macromol. Rapid Commun., 15, 21 (1994) https://doi.org/10.1002/marc.1994.030150105
  13. M. Sato, K. Nakagawa, M. Hayakawa, K.-I. Mukaida, and H. Fujiwara, Macromol. Chem. Phys., 196, 2955 (1995) https://doi.org/10.1002/macp.1995.021960919
  14. B.-Q. Chen, A, Kameyama, and T. Nishikubo, Macromolecules, 32, 6485 (1999) https://doi.org/10.1021/ma990348i
  15. S. Kumaresan and P. Kannan, J. Polym. Sci.; Part A: Polym. Chem., 41, 3188 (2003) https://doi.org/10.1002/pola.10910
  16. M. Sato, M. Mizoi, and Y. Uemoto, Macromol. Chem. Phys., 202, 3634 (2001) https://doi.org/10.1002/1521-3935(20011201)202:18<3634::AID-MACP3634>3.0.CO;2-J
  17. M. Sato and M. Mizoi, Polym. J., 36, 607 (2004) https://doi.org/10.1295/polymj.36.607
  18. J. Watanabe, H. Ono, I. Uematsu, and A. Abe, Macromolecules, 18, 2141 (1985) https://doi.org/10.1021/ma00153a013
  19. J. Watanabe, M. Goto, and T. Nagase, Macromolecules, 20, 298 (1987) https://doi.org/10.1021/ma00168a011
  20. J. Watanabe and Y. Takashina, Macromolecules, 24, 3423 (1991) https://doi.org/10.1021/ma00011a059
  21. J. Watanabe and Y. Takashina, Polym. J., 24, 709 (1992) https://doi.org/10.1295/polymj.24.709
  22. J. M. Rodriugez-Parada, R. Duran, and G. Wegner, Macromolecules, 22, 2507 (1989) https://doi.org/10.1021/ma00195a087
  23. K. Okoshi, H. Kamee, G. Suzaki, M. Tokita, M. Fujiki, and J. Watanabe, Macromolecules, 35, 4556 (2002) https://doi.org/10.1021/ma012056z
  24. T. Fukuda, Y. Tsujii, and T. Miyamoto, Macromol. Symp., 99, 257 (1995)
  25. Y.-D. Ma, Poymer Science and Technology, 8, 555 (1997)
  26. S.-Y. Jeong, J.-H. Jeong, Y.-M. Ma, and Y. Tsujii, Polymer(Korea), 25, 279 (2001)
  27. Q. Zhoi, L. Zhang, H. Okamura, M. Minoda, and T. Miyamoto, J. Polym. Sci.; Part A: Polym. Chem., 39, 376 (2001) https://doi.org/10.1002/1099-0518(20010201)39:3<376::AID-POLA1004>3.0.CO;2-Z
  28. Z. Yue and J. M. G. Cowie, Macromolecules, 35, 6572 (2002) https://doi.org/10.1021/ma0202787
  29. K. Ogura, T. Kanamoto, T. Sannan, K. Tanaka, and Y. Iwakura, Pro. Int. Conference on Chitin and Chitisan, Japan, p 39 (1982)
  30. Y.-D. Ma and K.-H. Kim, Polymer(Korea), 24, 418 (2000)
  31. J. Watanabe and T. Tominaga, Macromolecules, 26, 4032 (1993) https://doi.org/10.1021/ma00067a046
  32. J. Stumpe, Th. Fisher, and H. Menzel, Macromolecules, 29, 2831 (1996) https://doi.org/10.1021/ma951462d
  33. J.-H. Kim, S.-Y. Jeong, and Y.-D. Ma, Polymer(Korea), 28, 92 (2004)
  34. J.-H. Kim, S.-Y. Jeong, and Y.-D. Ma, Polymer(Korea), 28, 41 (2004)
  35. S.-Y. Jeong and Y.-D. Ma, Polymer(Korea), 31, 356 (2007)
  36. S.-Y. Jeong and Y.-D. Ma, Polymer(Korea), 30, 338 (2006)
  37. S.-Y. Jeong and Y.-D. Ma, Polymer(Korea), 31, 37 (2007)
  38. T. Yamagishi, T. Fukuda, and T. Miyamoto, Liq. Cryst., 10, 467 (1991) https://doi.org/10.1080/02678299108036436
  39. S.-Y. Jeong and Y.-D. Ma, J. Korean Ind. Eng. Chem., 18, 475 (2007)
  40. J.-H. Kim and Y.-D. Ma, J. Korean Ind. Eng. Chem., 15, 113 (2004)
  41. S.-Y. Jeong and Y.-D. Ma, Polymer (Korea), 31, 58 (2007)
  42. T. Yamaguchi, T. Asada, H. Hayashi, and N. Nakamura, Macromolecules, 22, 1141 (1989) https://doi.org/10.1021/ma00193a024
  43. S.-Y. Jeong and Y. -D. Ma, Polymer(Korea), 30, 35 (2006) https://doi.org/10.1016/0032-3861(89)90379-0
  44. S. Koltzenburg, F. Stelzer, and O. Nuyken, Macromol. Chem. Phys., 200, 821 (1999) https://doi.org/10.1002/(SICI)1521-3935(19990401)200:4<821::AID-MACP821>3.0.CO;2-A
  45. J. W. Y. Lam and B. Z. Tang, J. Polym. Sci.; Part A: Polym. Chem., 41, 2607 (2003) https://doi.org/10.1002/pola.10802
  46. Y.-D. Ma and S.-Y. Jeong, Industrial Technology Research Paper(Dankook University), 6, 1 (2005)
  47. T. Mihara, T. Uedaira, and N. Koide, Liq. Cryst., 29, 855 (2002) https://doi.org/10.1080/02678290210143889
  48. J.-H. Hu, B.-Y. Zhang, Y.-G. Jia, and Y. Wang, Polym. J., 35, 160 (2003) https://doi.org/10.1295/polymj.35.160
  49. A. V. Sesha Sainath, A, Kameswara Rao, and A. V. Reddy, J. Appl. Polym. Sci., 75, 465 (2000) https://doi.org/10.1002/(SICI)1097-4628(20000124)75:4<465::AID-APP1>3.0.CO;2-2
  50. N. L. Morris, R. G. Zimmermann, G. B. Jameson, A. W. Dalziel, P. M. Reuss, and R. G. Weiss, J. Am. Chem. Soc., 110, 2177 (1988) https://doi.org/10.1021/ja00215a029
  51. T, Pfeutter, D. Hanft, and P. Strohriegl, Liq. Cryst., 29, 1555 (2002) https://doi.org/10.1080/0267829021000034817
  52. A. Del Campo, A. Meyer, E. Perez, and A, Bello, Liq, Cryst., 31, 109 (2004) https://doi.org/10.1080/0267829032000159105
  53. F. Branolenburger, B. Mattes, K. Seifert, and P. Strohriegl, Liq. Cryst., 28, 1035 (2001) https://doi.org/10.1080/02678290110039921
  54. A. Takada, K. Fujii, J. Watanabe, T. Fukuda, and T. Miyamoto, Macromolecules, 27, 1651 (1994) https://doi.org/10.1021/ma00084a057
  55. H. Hattori and T. Uryu, J. Polym. Sci.; Part A: Polym. Chem., 38, 887 (2000) https://doi.org/10.1002/(SICI)1099-0518(20000301)38:5<887::AID-POLA13>3.0.CO;2-G
  56. T. Kaneko, H. Nagasawa, J. P. Gong, and Y. Osada, Macromolecules, 37, 187 (2004) https://doi.org/10.1021/ma035272b
  57. C. Pugh and A. L. Kiste, Handbook of Liquid Crystals, D. Demus, J. Goodby, G. W. Gray, H.-W. Spiess, and V. Vill, Editors, Wiley-VCH, Weinheim-New York, Vol 3, Chap. III, p 123 (1998)
  58. A. A. Craig and C. T. Imrie, Macromolecules, 28, 3617 (1995) https://doi.org/10.1021/ma00114a015
  59. A. A. Craig and C. T. Imrie, Macromolecules, 32, 6215 (1999) https://doi.org/10.1021/ma990525f
  60. A. A. Craig and C. T. Imrie, J. Mater. Chem., 4, 1705 (1994) https://doi.org/10.1039/jm9940401705
  61. A. A. Craig, I. Winchester, P. C. Madden, P. Larcey, I. W. Hamley, and C. T. Imrie, Polymer, 39, 1197 (1998) https://doi.org/10.1016/S0032-3861(97)00394-7
  62. C. T. Imrie, F. E. Karasz, and G. S. Attard, Macromolecules, 25, 1278 (1992) https://doi.org/10.1021/ma00030a012
  63. C. T. Imrie, F. E. Karasz, and G. S. Attard, Macromolecules, 27, 1578 (1994) https://doi.org/10.1021/ma00084a045
  64. S.-Y. Jeong and Y.-D. Ma, to be published
  65. E. M. Barrall II, Liquid Crystals, F. D. Saeva, Editor, Marcel Dekker, Inc., New York, Chap. 9, p 335 (1979)
  66. R. S. Porter, Mol. Cryst. Liq. Cryst., 8, 27 (1969) https://doi.org/10.1080/15421406908084896
  67. E.-D. Do, K.-N. Kim, Y.-W. Kwon, and J.-I. Jin, Liq. Cryst., 33, 511 (2006) https://doi.org/10.1080/02678290600617546
  68. A. Takada, T. Fukuda, J. Watanabe, and T. Miyamoto, Macromolecules, 28, 3394 (1995) https://doi.org/10.1021/ma00113a045
  69. T. Yamagishi, T. Fukuda, and T. Miyamoto, Mol. Cryst. Liq. Cryst., 172, 17 (1989) https://doi.org/10.1080/00268948908042147
  70. S. N. Bhadani and D. G. Gray, Mokromol. Chem. Rapid Commun., 3, 449 (1982) https://doi.org/10.1002/marc.1982.030030615
  71. T. A. Yamagishi, F. Guittard, M. H. Godinho, A. F. Matins, A. Cambon, and P. Sixou, Polym. Bull., 32, 47 (1994) https://doi.org/10.1007/BF00297413
  72. S. Weidner, D. Wolff, and J. Springer, Liq. Cryst., 20, 587 (1996) https://doi.org/10.1080/02678299608031147
  73. A. T. M. Marcelis, A. Koudijs, and E. J. R. Sudhalter, J. Mater. Chem., 6, 1469 (1996) https://doi.org/10.1039/jm9960601469
  74. A. T. M. Marcelis, A. Koudijs, and E. J. R. Sudhalter, Thin Solid Films, 284, 308 (1996) https://doi.org/10.1016/S0040-6090(95)08330-8