DOI QR코드

DOI QR Code

A Case Analysis of Volcanic Ash Dispersion under Various Volcanic Explosivity Index of the Mt. Baegdu

백두산 분화 강도에 따른 화산재 확산 사례 분석

  • Lee, Soon-Hwan (Institute of Environment Studies, Pusan National University) ;
  • Jang, Eun-Suk (Faculty of Engineering, Hanzhong University) ;
  • Lee, Hyun-Mi (Department of Atmospheric Environment, Pusan National University)
  • Received : 2012.05.22
  • Accepted : 2012.06.25
  • Published : 2012.06.30

Abstract

In order to clarify the characteristics of dispersion of volcanic tephra emitted from the Mt. Baegdu with various eruption environment, numerical analysis were performed using numerical models, Weather Research and Forecast (WRF) and FLEXPART. Synoptic conditions at 12 October 2010 was adopted because the volcanic ash of Mt. Baegdu can reach the Korean peninsula and its dispersion pattern was compared with different Volcanic Explosivity Index (VEI) and particle size. Predominant size of falling out ash flowing in the peninsular is smaller than 0.5 mm and the ash large than the size is difficult to get in the peninsular due to the its weak ability of truculent diffusion. the difference of ash distribution with various VEI scenarios is not so much but number density of ash in the air is dramatically changed. Volcanic ash tends to be deposited easily in eastern coastal area such as Gangneung and Busan, because of the inflow of ash from East Sea and barrier effect of the Taeback mountains along the east coast of the Korean Peninsula. Accumulated amount of ash deposition can be increased in short period in several urban areas.

다양한 지질학적 분화 강도에 따른 백두산 화산분출물의 확산 특성과 이들 분출물이 한반도에 미치는 영향을 분석하기 위하여 대기역학모형 WRF (Weather Research and Forecasting)와 확산모형 FLEXPART를 이용하여 수치실험을 실시하였다. 연구 대상일은 화산재 유입이 예상되는 2010년 10월 21일의 종관장이며, 방출 후 48시간 동안 화산재의 이동을 분석하였다. 백두산 분화 후 한반도에 유입되는 강하화산재의 크기는 0.05 mm 이하가 대부분을 차지하며, 큰 입자는 확산에 의한 이동이 작기 때문에 유입가능성이 크지 않았다. 분화강도에 따른 화산재의 이동 특성을 보면, 분화강도 차이에 따른 입자의 분포도의 차이는 크지 않으나, 수밀도의 차이는 크게 나타났다. 한반도 내 도시별 화산재의 침적량 분석에서 화산재가 기류를 타고 동해에서 유입되고 태백산맥의 차폐효과에 의하여 한반도 동쪽에 위치한 강릉, 부산의 침적량이 초기에 증가하는 경향을 나타내며, 지역별 침적량은 일시에 급격하게 증가할 수 있다.

Keywords

References

  1. 김남신, 2011, 시뮬레이션에 의한 백두산 화산분출 영향범위 분석. 한국지역지리학회지, 17, 348-356.
  2. 박병철, 2011, 백두산 화산폭발 대응 추진 현황. 2011년 국제화산방재세미나 자료집, p. 30.
  3. 소원주, 윤성효, 1999, 백두산 화산의 홀로세 대분화 연구: 개관, 한국지구과학회지, 20, 534-543.
  4. 윤성효, 윈종관, 이문원, 1993, 백두산 일원의 신생대 화산 활동과 화산암류의 특성 고찰. 지질학회지, 29, 291-307.
  5. 윤성효, 이정현, 2010, 과거 백두산의 화산활동과 향후 분화 가능성 그리고 남한학자들의 백두산 연구 참여 방안. 대한지질학회 2010년 추계 지질과학 연합 학술대회 발표회 초록집, p. 14.
  6. 윤성효, 이정현, 2012, 백두산 화산의 전조활동 분석 연구. 암석학회지, 21, 1-12.
  7. 윤성효, 최종섭, 1996, 백두산 천지 칼데라 화산의 역사 분출기록. 한국지구과학회지, 17, 376-382.
  8. 이순환, 이화운, 김유근, 2002, 복잡지형에서 도시화에 따른 대기오염 확산에 관한 시뮬레이션. 한국대기환경학회지, 18, 67-83.
  9. 이순환, 윤성효, 2011, 백두산 분출물 확산 예측에 대기흐름장 평균화가 미치는 영향. 한국지구과학회지, 32, 360-372. https://doi.org/10.5467/JKESS.2011.32.4.360
  10. 이화운, 이현미, 이순환, 최현정, 2010, 라그랑지안 입자확산모델을 이용한 광양만 권역에서의 공기괴 재순환 현상의 수치모의. 한국환경과학회지, 19, 157-170.
  11. Corradini, S., Merucci, L., and Folch, A., 2011, Volcanic Ash Cloud Properties: Comparison Between MODIS Satellite Retrievals and FALL3D Transport Model. Geoscience and Remote Sensing Letters, 8, 248-252. https://doi.org/10.1109/LGRS.2010.2064156
  12. Flentje, H., Claude, H., Elste, T., Gilge, S., Kohler, U., Plass-Dulmer, C., Steinbrecht, W., Thomas, W., Werner, A., and Fricke, W., 2010, The Eyjafjallajokull eruption in April 2010 - detection of volcanic plume using insitu measurements, ozone sondes and lidar-ceilometer profiles. Atmospheric Chemistry and Physics, 10, 10085-10092. https://doi.org/10.5194/acp-10-10085-2010
  13. Furuta, T., Fujioka, K., and Arai, F., 1986, Widespread submarine tephras around Japan-Petrographic and chemical properties. Marine Geology, 72, 125-142. https://doi.org/10.1016/0025-3227(86)90103-9
  14. Legg, B.J. and Raupach, M.R., 1982, Markov-chain simulation of particle dispersion in inhomogeneous flows: The mean drift velocity induced by a gradient in Eulerian velocity variance. Boundary Layer Meteorology, 24, 3-13. https://doi.org/10.1007/BF00121796
  15. Lei, J. and Zhao, D., 2005, P-wave tomography and origin of the Changbai intraplate volcano in northeast Asia. Tectonophysics, 397, 281-295. https://doi.org/10.1016/j.tecto.2004.12.009
  16. Mason, B.G., Pyle, D.M., and Oppenheimer, C., 2004, The size and frequency of the largest explosive eruptions on Earth. Bulletin of Volcanology, 66, 735-748. https://doi.org/10.1007/s00445-004-0355-9
  17. Ming, Y.H., Su, W., and Fang, L.H., 2006, A preliminary study of the types of volcanic earthquakes and volcanic activity at the Changbaishan Tianchi volcano. Earthquake Research in China, 20, 286-294.
  18. Newhall, C.G. and Self, S., 1982, The volcanic explosivity index (VEI): An estimate of explosive magnitude for historical volcanism. Journal of Geophysical Research, 87, 1231-1238. https://doi.org/10.1029/JC087iC02p01231
  19. Prata, A.J., Carn, S.A., Stohl, A., and Kerkmann, J., 2007, Long range transport and fate of a stratospheric volcanic cloud from Soufrière Hills volcano, Montserrat. Atmosphere Chemistry and Physics, 7, 5093-5103. https://doi.org/10.5194/acp-7-5093-2007
  20. Sarna-Wojcicki, A.M., Shipley, S., Waitt, R., Dzurisin, D., and Wood, S.H., 1981, Areal distribution, thickness, mass, volume, and grain size of air-fall ash from the six major eruptions of 1980. In Lipman, P.W. and Mullinaux D.R. (eds.), The 1980 Eruptions of Mount St. Helens, Washington. University of Washington Press, WA, USA, 577-601.
  21. Stohl, A., Forster, C., Frank, A., Seibert, P., and Wotawa, G., 2005, Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2. Atmospheric Chemistry and Physics, 5, 2461-2474. https://doi.org/10.5194/acp-5-2461-2005
  22. Thomson, D.j., 1987, Criteria for the selection of stochastic models of particle trajectories in turbulent flows. Journal of Fluid Mechanics, 180, 529-556. https://doi.org/10.1017/S0022112087001940
  23. Wiegnera, M., Gasteigera, J., GroBa, S., Schnella, F., Freudenthalera, V., and Forkelb, R., 2011, Characterization of the Eyjafjallajokull ash-plume: Potential of lidar remote sensing. Physics and Chemistry of the Earth, doi:10.1016/j.pce.2011.01.006.

Cited by

  1. Volcanological Interpretation of Historical Eruptions of Mt. Baekdusan Volcano vol.34, pp.6, 2013, https://doi.org/10.5467/JKESS.2013.34.6.456
  2. Estimation of Economic Losses on the Agricultural Sector in Gangwon Province, Korea, Based on the Baekdusan Volcanic Ash Damage Scenario vol.34, pp.6, 2013, https://doi.org/10.5467/JKESS.2013.34.6.515
  3. Building Damage Functions Using Limited Available Data for Volcanic Ash Loss Estimation vol.34, pp.6, 2013, https://doi.org/10.5467/JKESS.2013.34.6.524
  4. Monitoring of the Volcanic Ash Using Satellite Observation and Trajectory Analysis Model vol.30, pp.1, 2014, https://doi.org/10.7780/kjrs.2014.30.1.2
  5. Numerical Simulation of Volcanic Ash Dispersion and Deposition during 2011 Eruption of Mt. Kirishima vol.35, pp.4, 2014, https://doi.org/10.5467/JKESS.2014.35.4.237
  6. Assessment of Water Quality in Paldang-dam Surface Area through the Estimation of Volcanic Ash Toxic Components from Mt. Baekdu vol.47, pp.3, 2014, https://doi.org/10.3741/JKWRA.2014.47.3.237
  7. Development of Management Standards for the Mitigation of Volcanic Ash Damage - Focusing on Forest Products and Forestry Facilities - vol.15, pp.2, 2015, https://doi.org/10.9798/KOSHAM.2015.15.2.205
  8. A Quantitative Approach to the influence on the South Korean Air Transportation System in the Event of Volcanic Ash Dispersal vol.34, pp.4, 2016, https://doi.org/10.7470/jkst.2016.34.4.318