DOI QR코드

DOI QR Code

Precambrian Crustal Evolution of the Korean Peninsula

한반도 선캠브리아 지각진화사

  • Lee, Seung-Ryeol (Geological Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Cho, Kyung-O (Geological Research Division, Korea Institute of Geoscience and Mineral Resources)
  • 이승렬 (한국지질자원연구원 국토지질연구본부) ;
  • 조경오 (한국지질자원연구원 국토지질연구본부)
  • Received : 2012.04.24
  • Accepted : 2012.05.04
  • Published : 2012.06.30

Abstract

The Korean Peninsula consists of three Precambrian blocks: Nangrim, Gyeonggi and Yeongnam massifs. Here we revisited previous stratigraphic relationships, largely based on new geochronologic data, and investigated the crustal evolution history of the Precambrian massifs. The Precambrian strata have been usually divided into lower crystalline basements and upper supracrustal rocks. The former has been considered as Archean or Paleoproterozoic in age, whereas the latter as Paleoproterozoic or later. However, both are revealed as the Paleoproterozoic (2.3-1.8 Ga) strata as a whole, and Archean strata are very limited in the Korean Peninsula. These make the previous stratigraphic system wrong and require reconsideration. The oldest age of the basement rocks can be dated as old as Paleoarchean, suggested by the occurrence of ~3.6 Ga inherited zircon. However, most of crust-forming materials were extracted from mantle around ~2.7 Ga, and produced major portions of crust materials at ~2.5 Ga, which make each massif a discrete continental mass. After that, all the massifs belonged to continental margin orogen during the Paleoproterozoic time, and experienced repeated intracrustal differentiation. After the final cratonization occurring at ~1.9-1.8 Ga, they were stabilized as continental platforms. The Nangrim and Gyeonggi massif included local sedimentary deposition as well as igneous activity during Meso-to Neoproterozoic, but the Yeongnam massif remained stable before the development of Paleozoic basin.

한반도는 크게 낭림육괴, 경기육괴, 영남육괴의 3개의 주요 선캠브리아 기반암복합체로 구성된다. 이 논문에서는 지금까지 알려진 우리나라 선캠브리아 지층의 분포와 층서계통을 살펴보고, 최근 보고된 정밀지질 연대자료를 기초로 층서계통의 문제점을 고찰하고, 연대자료 및 동위원소자료를 바탕으로 각 지괴들의 선캠브리아 지각진화사를 살펴보았다. 우리나라 선캠브리아 층서는 대체로 결정질 기반암과 상부의 지표암(supracrustal rock)으로 분류되었다. 그러나 이들 모두의 연령이 대부분 후기 고원생대(2.3~1.8 Ga)에 해당하는 것으로 밝혀져 기존 층서체계에 문제가 있음이 밝혀졌으며, 과거 기반암의 연대로 생각되었던 시생대 암층은 거의 존재하지 않는 것으로 밝혀졌다. 저어콘 상속핵 연대에 의하면 우리나라 선캠브리아 지각의 기원은 이미 고시생대(~3.6 Ga) 시기에 시작되었다. 이후 27억년을 전후하여 맨틀로부터 대부분의 지각형성 기원물질이 추출되었으며, 약 200~400Ma의 정치시기를 거쳐 약 25억년(경기육괴, 영남육괴) 혹은 23억년(낭림육괴)에 이들 기원물질의 재활성에 의해 대부분의 지각이 형성되었다. 그러나 이들 지각들은 고원생대 시기동안 대륙연변부 조산대에 위치하여 반복적인 지각분화과정을 경험하였으며, 이후 약 18억~19억 시기에 최종 지각화 과정을 거쳐 안정된 대륙탁상지로 형성되었다. 이후 낭림육괴와 경기육괴에는 중원생대에서 신원생대 시기에 일부 퇴적작용과 화성활동이 있었으나, 영남육괴는 고생대 퇴적분지 형성 이전까지 비교적 안정된 지괴로 남아 있었다.

Keywords

References

  1. 권용완, 김형식, 오창환, 1997. 경기육괴 북동부지역에 분포하는 오대산편마암복합체의 다변성작용. 암석학회지, 6, 226-243.
  2. 기원서, 김정환, 1992. 순창전단대에 발달된 전단지시자에 대한 고찰. 지질학회지, 28, 426-435.
  3. 김남훈, 2010. 영남육괴 북동부 일대에 분포하는 선캠브리아기 기반암류의 암석학, 지구화학 및 지구연대학적 연구: 그 지구조적 의의. 부경대학교, 박사학위논문, 237p.
  4. 김남훈, 박계헌, 송용선, 강지훈, 2002. 평해-울진 지역 선캠브리아기 기성통의 부재 및 평해통과 원남통의 관계에 대한 소고. 암석학회지, 11, 271-277.
  5. 김남훈, 송용선, 박계헌, 이호선, 2009. 영남(소백산)육괴 북동부 평해지역 화강편마암류의 SHRIMP U-Pb 저콘 연대. 암석학회지, 18, 31-47.
  6. 김명정, 박계헌, 박양진, 최지은, 2011. 옥천변성대 충주지역 계명산층의 SHRIMP U-Pb 연령. 한국암석학회한국광물학회 공동학술발표회 논문집, 51.
  7. 김옥준, 1973. 경기육괴서북부의 변성암복합체의 층서와 지질구조. 대한광산지질학회, 6, 201-218.
  8. 김옥준, 홍만섭, 박희인, 김기태, 1963b. 한국지질도 1:50,000 삼근리도폭 및 설명서. 국립지질조사소, 36p.
  9. 김옥준, 홍만섭, 원종관, 박희인, 박양대, 김기태, 1963a. 한국지질도 1:50,000 평해도폭 및 설명서. 국립지질조사소, 28p.
  10. 김옥준, 홍만섭, 원종관, 박희인, 박양대, 김기태, 1963c. 한국지질도 1:50,000 도계동도폭 및 설명서. 국립지질조사소, 23p.
  11. 나기창, 1996. 선캠브리아의 지질시대 구분 및 동북 아시아 선캠브리아의 층서와 이에 관한 우리말 용어의 문제점. 암석학회지, 5, 10-20.
  12. 나기창, 김형식, 이상훈, 1982. 서산층군의 층서 및 변성작용. 대한광산지질학회, 15, 33-39.
  13. 대한지질학회, 1998. 한국의 지질. 시그마프레스, 서울, 802p.
  14. 박계헌, 송용선, 박맹언, 이승구, 류호정, 2000. 동북아시아 지역 선캠브리아 지괴에 대한 암석학, 지구화학 및 지구 연대학적 연구: 1. 지리산 지역 변성암의 변성연대. 암석학회지, 9, 29-39.
  15. 박계헌, 정창식, 이광식, 장호완, 1993. 태백산지역의 고기 화강암 및 화강편마암류에 대한 납 동위원소 연구. 지질학회지, 29, 387-395.
  16. 손치무, 1971. 동아의 선캠브리아계의 층서에 관하여. 대한광산지질학회, 4, 19-32.
  17. 손치무, 1973. 선캠브리아기의 구분에 대하여. 광산지질학회지, 6, 65-78.
  18. 송용선, 박계헌, 박맹언, Cao L., Jin W., Zhang X., 류호정, 2001. 동북아시아지역 선캠브리아 지괴에 대한 암석학, 지구화학 및 지구연대학적 연구: 2. 경기육괴 일부 변성암의 저어콘 연대. 암석학회지, 10, 95-105.
  19. 송용선, 박계헌, 서재현, 조희제, 이기욱, 2011. 평창-원주 지역의 경기육괴 기반암 편마암 복합체에 대한 SHRIMP 저어콘 연대 측정. 암석학회지, 20, 99-114.
  20. 송용선, 박계헌, 이호선, Cao Lin, Orihashi Yuji, 2009. 북한 증산-평원지역 화강편마암의 LA-ICP-MS U-Pb 저콘 연대. 암석학회지, 18, 171-179.
  21. 오창환, 김정빈, 박영석, 김성원, 2006. 경기육괴의 고원생대 암류들에 대한 SHRIMP U-Pb 저어콘 연대와 그 의의. 지질학회지, 42, 587-606.
  22. 이기욱, 김정민, 정창식, 조문섭, Ian S. Williams, 2006. 영남육괴 북부지역 미그마타이트질 편마암에서 산출하는 모나자이트의 표면 U-Pb 연대-한반도 고원생대의 고온 변성작용. 대한지질학회 추계학술발표회 초록집, 4.
  23. 이기욱, 조문섭, Ian S. Williams, 안인수, 정창식, 2008. SHRIMP를 이용한 모나자이트 U-Th-Pb 연대측정 및 산소동위원소 예비분석. 한국암석학회한국광물학회 공동학술발표회 논문집, 33.
  24. 이상만, 김형식, 1984. 소위 율리층군 및 원남층군의 변성 암석학적 연구-태백산일대를 중심으로. 지질학회지, 20, 195-214.
  25. 이상만, 김형식, 홍성태, 박찬수, 1990. 원주-평창 일대에 분포하는 변성암류에 대한 암석학적 연구. 지질학회지, 26, 32-52
  26. 이용일, 최태진, Orihashi Yuji, 2011. 선캠브리아기 율리층군의 LA-ICP-MS 저어콘 U-Pb 연대. 지질학회지, 47, 81-87.
  27. 이호선, 박계헌, 송용선, 김남훈, Orihashi Yuji, 2010. 영남 육괴 북동부 홍제사 화강암의 LA-ICP-MS U-Pb 저콘 연대. 암석학회지, 19, 103-108.
  28. 이호선, 송용선, 박계헌, 2002. 중부 영남육괴 김천일대 선캠브리아기 편마암의 저어콘 화학연대. 암석학회지, 11, 157-168.
  29. 정창식, 길영우, 김정민, 정연중, 임창복, 2004. 영남육괴 북동부 죽변 지역 선캠브리아기 기반암류의 지구화학적 특징. 지질학회지, 40, 481-499.
  30. 조등룡, 2010. 경기육괴 서부 전변성도 편암의 SHRIMP U-Pb 저어콘 연대와 층서적 의의. 대한자원환경지질학회 춘계지질과학기술공동학술대회 논문집, 120.
  31. 조등룡, 김용준, 2003. 경기육괴 포천 지역의 흑운모 편마암과 우백질 화강암맥에 대한 SHRIMP U-Pb 저어콘 연대 측정: 광역변성작용 연령 및 퇴적시기의 제한. 대한지질학회 추계학술발표회 초록집, 76.
  32. 조등룡, 김용준, Richard Armstrong, 2002a. 영남육괴 지리산 지역에 분포하는 변성퇴적암과 우백대의 SHRIMP U-Pb저콘 연대측정: 원생대 전기 (2,002Ma-1,864Ma)의 퇴적과 광역변성작용. 한국자원공학회대한자원환경지질학회한국지구물리탐사학회대한지질학회 춘계공동학술발표회 논문집, 283-285.
  33. 조등룡, 김용준, Richard Armstrong, 2002b. 영남육괴 지리산 지역의 동복 화강편마암에 대한 SHRIMP U-Pb 저콘 연대와 이의 선캠브리아 지체구조적 의미. 한국암석학회한국광물학회 공동학술발표회 논문집, 31-33.
  34. 조등룡, 김용준, Richard Armstrong, 2006. 서산층군 함철규암의 쇄설성 저어콘에 대한 SHRIMP U-Pb 연대: 시대와 층서의 제한. 암석학회지, 15, 119-127.
  35. 조등룡, 김유봉, 2003. 장계-장수 지역의 영남육괴 선캠브리아 기반암류에 대한 SHRIMP U-Pb 저어콘 연대 측정 : 고원생대의 지질사건. 대한지질학회 추계학술발표회 초록집, 77.
  36. 조문섭, 김태훈, 김현철, 2004. 옥천변성대 규장질 변성응회암의 SHRIMP U-Pb 저어콘 연대: 신원생대(약 7.5억년전) 화산활동. 암석학회지, 13, 119-125.
  37. Chang, H.-W., Turek, A. and Kim, C.-B., 2003. U-Pb zircon geochronology and Sm-Nd isotopic constraint for Precambrian plutonic rocks in the northeastern part of Ryeongnam massif, Korea. Geochemical Journal, 37, 471-491. https://doi.org/10.2343/geochemj.37.471
  38. Chang, K.-H. and Park, S.-O., 2001. Paleozoic Yellow Sea Transform Fault: Its role in the tectonic history of Korea and adjacent regions. Gondwana Research, 4, 588-589.
  39. Chang, K.-H. and Zhao, X., 2012. North and South China suturing in the east end: What happened in Korean Peninsula? Gondwana Research, in press.
  40. Cheong, C.-S., Kwon, S.-T. and Park, K.-H., 2000. Pb and Nd isotopic constraints on Paleoproterozoic crustal evolution of the northeastern Yeongnam massif, South Korea. Precambrian Research, 102, 207-220. https://doi.org/10.1016/S0301-9268(00)00066-8
  41. Cho, D.-L., Kim, Y.-J. and Armstrong, R., 2006. SHRIMP U-Pb geochronology of detrital zircons from iron-bearing quartzite of the Seosan Group: Constraints on age and stratigraphy. Journal of Petrological Society of Korea, 15, 119-127. (in Korean with English abstract)
  42. Cho, D.-L., Kwon S.-T., Jeon, E.-Y. and Armstrong, R., 2001. SHRIMP U-Pb zircon geochronology of an amphibolite and a paragneiss from the Samgot unit, Yeoncheon Complex in the Imjingang belt, Korea: Tectonic implication. Geological Society of Korea Annual Meeting Abstract, 14-1, 89.
  43. Cho, D.-L., Kwon, S.-T., Jeon, E.-Y. and Armstrong, R., 2005. SHRIMP U-Pb zircon ages of metamorphic rocks from the Samgot unit, Yeoncheon complex in the Imjingang belt, Korea: Implications for the Phanerozoic tectonics of East Asia [abs.]. Annual Meeting of the Geological Society of America, 171, 6.
  44. Cho, M. and Kim, Y., 2005. Metamorphic evolution of the Ogcheon Belt, Korea: a reviewand new age constraints. International Geology Review, 47, 41-57. https://doi.org/10.2747/0020-6814.47.1.41
  45. Cho, M., 2001. A continuation of chinese Ultrahigh-pressure belt in Korea: Evidence from Ion Microprobe U-Pb zircon ages. Gondwana Research, 4, 708. https://doi.org/10.1016/S1342-937X(05)70505-0
  46. Cho, M., Kim, H., Lee, Y., Horie, K. and Hidaka, H., 2008. The oldest (ca. 2.51 Ga) rock in South Korea: U-Pb zircon age of a tonalitic migmatite, Daeijak Island, western Gyeonggi massif. Geosciences Journal, 12, 1-6. https://doi.org/10.1007/s12303-008-0001-1
  47. Cho, M., Na, J. and Yi, K., 2010. SHRIMP U-Pb ages of detrital zircons in metasandstones of the Taean Formation, western Gyeonggi massif, Korea: Tectonic implications. Geosciences Journal, 14, 99-109. https://doi.org/10.1007/s12303-010-0011-7
  48. Chough, S.-K., Kwon, S.-T., Ree, J.-H. and Choi, D.K., 2000. Tectonic and sedimentary evolution of the Korean peninsula: a review and new view. Earth Science Reviews, 52, 175-235. https://doi.org/10.1016/S0012-8252(00)00029-5
  49. Cluzel, D., Jolivet, L. and Cadet, J.P., 1991. Early middle Paleozoic intraplate orogeny in the Ogcheon belt South Korea: a new insight on the Paleozoic buildup of east Asia. Tectonics, 10, 1130-1151. https://doi.org/10.1029/91TC00866
  50. DePaolo D.J., 1981. Neodymium isotopes in the Colorado front Range and crust-mantle evolution in the Proterozoic. Nature, 291, 193-196. https://doi.org/10.1038/291193a0
  51. Gebauer, D. and Grunenfelder, M., 1979. U-Th-Pb dating of minerals. In Lectures in Isotope Geology (eds. E. Jajer, J.C. Hunziker), Springer-Verlag, Berlin Heidelberg New York, 105-131.
  52. Hietpas, R.T., Jensenb, J.D. and Bolon, D.N.A., 2011. Experimental illumination of a fitness landscape. Proceeding of the Narional Academy of Sciences of the United States of America. 108, 7896-7901.
  53. Hong, Y.K., 1992. Petrogeneses and evolution of early Proterozoic granitic rocks in the northeastern Ryeongnam massif, Korea. Journal of Geological Society of Korea, 28, 571-589.
  54. Horie, K., Tsutsumi, Y., Kim, H., Cho, M., Hidaka, H. and Terada, K., 2009. A U-Pb geochronological study of migmatic gneiss in the Busan Gneiss complex, Gyeonggi massif, Korea. Geosciences Journal, 13, 205-215. https://doi.org/10.1007/s12303-009-0021-5
  55. Jeon, H., Cho, M., Kim, H., Horie, K. and Hidaka, H., 2007. Early Archean to Middle Jurassic evolution of the Korean Peninsula and its correlation with Chinese cratons: SHRIMP U-Pb zircon age constraints. Journal of Geology, 115, 525-539. https://doi.org/10.1086/519776
  56. Kemp, A.I.S. and Hawkesworth, C.J., 2003. Granitic perspectives on the generation and secular evolution of the continental crust. In: Rudnick, R.L. (Ed.), The Crust, Treatise in Geochemistry, 3, 349-410.
  57. Kim, C.-B., Turek, A., Chang, H.W., Park, Y.S. and Ahn, K.S., 1999. U-Pb zircon ages for Precambrian and Mesozoic plutonic rocks in the Seoul-Cheongju-Chooncheon area, Gyeonggi massif, Korea. Geochemical Journal, 33, 379-397. https://doi.org/10.2343/geochemj.33.379
  58. Kim, J. and Cho, M., 2003. Low-pressure metamorphism and leucogranie magmatism, northeastern Yeongnam Massif, Korea: implication for Paleoproterozoic crustal evolution. Precambrian Research, 122, 235-251. https://doi.org/10.1016/S0301-9268(02)00213-9
  59. Kim, N., Cheong, C.-S., Park, K.-H., Kim, J. and Song, Y.-S., 2012. Crustal evolution of northeastern Yeongnam Massif, Korea, revealed by SHRIMP U-Pb zircon geochronology and geochemistry. Gondwana Research, 21, 865-875. https://doi.org/10.1016/j.gr.2011.10.003
  60. Kim, S.W., Kwon, S., Santosh, M., Williams, I.S. and Yi K., 2011. A Paleozoic subduction complex in Korea: SHRIMP zircon U-Pb ages and tectonic implications. Gondwana Resarch, 20, 890-903. https://doi.org/10.1016/j.gr.2011.05.004
  61. Kim, S.W., Oh, C.W., Ryu, I.-C., Williams, I.S., Sajeev, K., Santosh, M. and Rajesh, V.J., 2006a. Neoproterozoic bimodal volcanism in the Okcheon Belt, South Korea, and its comparison with the Nanhua Rift, South China: implications for rifting in Rodinia. Journal of Geology 114, 717-733. https://doi.org/10.1086/507616
  62. Kim, S.W., Oh, C.W., Williams, I.S., Rubbato, D., Ryu, I.-C., Rajesh, V.J., Kim, C.-B., Guo, J. and Zhai, M., 2006b. Phanerozoic high-pressure eclogite and intermediate-pressure granulite facies metamorphism in the Gyeonggi Block, South Korea: implications for the eastward extension of the Dabie-Sulu continental collision zone. Lithos, 92, 357-377. https://doi.org/10.1016/j.lithos.2006.03.050
  63. Kim, S.W., Williams, I.S., Kwon, S. and Oh, CW., 2008. SHRIMP zircon geochronology and geochemical characteristics of metaplutonic rocks from the south-western Gyeonggi Block, Korea: implications for Paleoproterozoic to Mesozoic tectonic links between the Korean Peninsula and eastern China. Proceedings of the Annual Joint Conference, Petrological Society of Korea and Mineralogical Society of Korea, 26-29.
  64. Kwon, S., Sajeev, K., Mitra, G., Park, Y., Kim, S.W. and Ryu, I.-C., 2009. Evidence for Permo-Triassic collision in Far East Asia: the Korean collisional orogen. Earth and Planetary Science Letters 279, 340-349. https://doi.org/10.1016/j.epsl.2009.01.016
  65. Kwon, Y.W., Oh, C.W. and Kim, H.S., 2003. Granulitefacies metamorphism in the Punggi area, northeastern Yeongnam massif, Korea and its tectonic implications for east Asia. Precambrian Research, 122, 253-273. https://doi.org/10.1016/S0301-9268(02)00214-0
  66. Lan, C.Y., Lee, T., Zhou, X.H. and Kwon, S.T., 1995. Nd isotopic study of Precambrian basement of South Korea: evidence for early Archean crust? Geology, 23, 249-252. https://doi.org/10.1130/0091-7613(1995)023<0249:NISOPB>2.3.CO;2
  67. Lee, K.-S., Chang, H.-W. and Park, K.-H., 1998. Neoproterozoic bimodal volcanism in the central Ogcheon belt, Korea: age and tectonic implication. Precambrian Research, 89, 47-57. https://doi.org/10.1016/S0301-9268(97)00077-6
  68. Lee, S.R., Cho, M., Cheong, C.S. and Park, K.H., 1997. An early Proterozoic Sm-Nd age of mafic granulite from the Hwancheon area, South Korea. Geoscience Journal, 1, 136-142. https://doi.org/10.1007/BF02910205
  69. Lee, S.R., Cho, D.-L., Cho, M., Wu, F.-Y., Kim, H. and Jeon, H., 2007. Hf isotopic evidence for Paleoarchean (> 3.5 Ga) crustal components in the Korean Peninsula. Geosciences Journal, 11, 271-278. https://doi.org/10.1007/BF02857045
  70. Lee, S.R., Cho, M., Cheong, C.-S., Kim, H. and Wingate, M.T.D., 2003. Age, geochemistry and tectonic significance of Neoproterozoic alkaline granitoids in the north-western margin of the Gyeonggi massif, South Korea. Precambrian Research, 122, 297-310. https://doi.org/10.1016/S0301-9268(02)00216-4
  71. Lee, S.R., Cho, M., Yi, K. and Stern, R.A., 2000, Early Proterozoic granulites in central Korea: tectonic correlation with Chinese cratons. The Journal of Geology, 108, 729-738. https://doi.org/10.1086/317951
  72. Li, S.Z., Zhao, G.C., Santoshi, M., Liu, X. and Dai, L.M., 2011. Palaeoproterozoic tectonothermal evolution and deep crustal processes in the Jiao-Liao-Ji Belt, North China Craton: a review. Geological Journal, 46, 525-543. https://doi.org/10.1002/gj.1282
  73. Li, Z.X., and Powell. C.McA., 2001. An outline of the paleogeographic evolution of the Australasian region since the beginning of the Neoproterozoic. Earth-Science Reviews, 53, 237-277. https://doi.org/10.1016/S0012-8252(00)00021-0
  74. Lin, J., Fuller, M. and Zhang, W., 1985. Preliminary Phanerozoic polar wander paths for the North and South China Blocks. Nature, 313, 444-449. https://doi.org/10.1038/313444a0
  75. Lyang, T.J., Liu, Y., Yang, J.H., Kim, H., Han, R.Y. and Kim, J.N., 2009. Precambrian crustal evolution in Rangrim Massif, Korean Peninsula. Global Geology, 12, 57-63.
  76. Maruyama, S.Y., Kimura, I.G. and Terabayashi, M., 1997. Paleogeographic maps of the Japanese islands: plate tectonic synthesis from 750 Ma to the present. Island Arc 6, 121-142. https://doi.org/10.1111/j.1440-1738.1997.tb00043.x
  77. Metcalfe, I., 2006. Palaeozoic and Mesozoic tectonic evolution and palaeogeography of East Asian crustal fragments: The Korean Peninsula in context. Gondwana Research, 9, 24-46. https://doi.org/10.1016/j.gr.2005.04.002
  78. Na, K.C., 1992. A study on the Metamorphism in thd southwestern part of Gyeonggi Massif. Journal of Geological Society of Korea, 1, 25-33.
  79. Nelson, D.R., 2001. An assessment of the determination of depositional ages for Precambrian clastic sedimentary rocks by U-Pb dating of detrital zircons. Sedimentary Geology, 141-142, 37-60. https://doi.org/10.1016/S0037-0738(01)00067-7
  80. Nemchin, A.A. and Cawood, P.A., 2005. Discordance of the U-Pb system in detrital zircons: Implications for provenance studies of sedimentary rocks. Sedimentary Geology, 182, 143-162. https://doi.org/10.1016/j.sedgeo.2005.07.011
  81. Oh, C.W., 2006. A new concept on tectonic correlation between Korea, China and Japan: histories from the late Proterozoic to Cretaceous. Gondwana Research, 9, 47-61. https://doi.org/10.1016/j.gr.2005.06.001
  82. Oh, C.W., Choi, S.-G., Seo, J., Rajesh, V.J., Lee, J.H., Zhai, M. and Peng, P., 2009. Neoproterozoic tectonic evolution of the Hongseong area, southwestern Gyeonggi Massif, South Korea; implication for the tectonic evolution of Northeast Asia. Gondwana Research, 16, 272-284. https://doi.org/10.1016/j.gr.2009.04.001
  83. Oh, C.W., Kim, S.W. and Williams, I.S., 2006. Spinel granulite in Odesan area, South Korea: tectonic implications for the collision between the North and South China blocks. Lithos, 92, 557-575. https://doi.org/10.1016/j.lithos.2006.03.051
  84. Paek, R.J., Kang, H.G. and Jon, G.P., 1996. Geology of Korea. Pyongyang Korea. 631p.
  85. Peng, P., Zhai, M., Li, Q., Wu, F., Hou, Q., Li, Z., Li, T. and Zhang, Y., 2011. Neoproterozoic (-900 Ma) Sariwon sills in North Korea: geochronology, geochemistry and implications for the evolution of the south-eastern margin of the North China Craton. Gondwana Research, 20, 243-254. https://doi.org/10.1016/j.gr.2010.12.011
  86. Ree, J.H., Cho, M., Kwon, S.T. and Nakamura, E., 1996. Possible eastward extension of Chinese collision belt in South-Korea: the Imjingang belt. Geology, 24, 1071-1074. https://doi.org/10.1130/0091-7613(1996)024<1071:PEEOCC>2.3.CO;2
  87. Ree, J.H., Kwon, S., Park, Y., Kwon, S.T. and Park, S.H., 2001. Pretectonic and posttectonic emplacements of the granitoids in the south central Okchon belt, South Korea: implications for the timing of strike-slip shearing and thrusting. Tectonics, 20, 850-867. https://doi.org/10.1029/2000TC001267
  88. Sagong, H. and Kwon, S.-T., 1998. Pb-Pb age and uplift history of the Busan gneiss complex in the Okchon Belt, Korea: a comparison with the Bagdalryeong gneiss complex in the Kyongki Massif. Geosciences Journal, 2, 99-106. https://doi.org/10.1007/BF02910488
  89. Sagong, H., Cheong, C.-S. and Kwon, S.-T., 2003. Paleoproterozoic orogeny in South Korea: evidence from Sm-Nd and Pb step-leaching garnet ages of Precambrian basement rocks. Precambrian Research, 122, 275-295. https://doi.org/10.1016/S0301-9268(02)00215-2
  90. Taylor, S.R. and McLennan, S.M., 1985. The continental crust: Its composition and evolution: Oxford, Blackwell, 312p.
  91. Taylor, S.R. and McLennan, S.M., 1995. The geochemical evolution of the continental crust, Reviews of Geophysics, 33, 241-265. https://doi.org/10.1029/95RG00262
  92. Turek, A. and Kim, C.-B., 1996. U-Pb zircon ages for Precambrian rocks in southwestern Ryeongnam and southwestern Gyeonggi massifs, Korea. Geochemical Journal, 30, 231-249. https://doi.org/10.2343/geochemj.30.231
  93. Wan, Y.S., Liu, D.Y., Wang, S.J., Dong, C.Y., Yang, E.X., Wang,W., Zhou, H.Y., Ning, Z.G., Du, L.L., Yin, X.Y., Xie, H.Q. and Ma, M.Z., 2010. Juvenile magmatism and crustal recycling at the end of Neoarchean in western Shandong province, north China Craton: evidence from SHRIMP zircon dating. American Journal of Science, 310, 1503-1552. https://doi.org/10.2475/10.2010.11
  94. Wang, H. and Mo, X., 1995. An outline of the tectonic evolution of China. Episodes, 18, 6-16.
  95. Wu, F.-Y., Han, R.-H., Yang, J.-H., Wilde, S.A., Zhai, M.-G., and Park, S.-C., 2007a, Initial constraints on the timingof granitic magmatism in North Korea using U-Pb zircon geochronology. Chemical Geology, 238, 232-248. https://doi.org/10.1016/j.chemgeo.2006.11.012
  96. Wu, F.-Y., Yang, J.-H., Wilde, S.A., Liu, X.-M., Guo, J.-H., and Zhai, M.-G., 2007b, Detrital zircon U-Pb and Hf isotopic constraints on the crustal evolution of North Korea. Precambrian Research, 159, 155-177. https://doi.org/10.1016/j.precamres.2007.06.007
  97. Wu, F.-Y., Zhao, G.C., Wilde, S.A. and Sun, D.Y., 2005. Nd Isotopic constraints on the crustal formation of the North China Craton. Journal of Asian Earth Science, 24, 523-545. https://doi.org/10.1016/j.jseaes.2003.10.011
  98. Yi, K. and Cho, M., 2009. SHRIMP geochronology and reaction texture of monazite from a retrogressive transitional layer, Hwacheon Granulite Complex, Korea. Geosciences Journal, 13, 293-304. https://doi.org/10.1007/s12303-009-0028-y
  99. Yin, A. and Nie, S., 1993. An indentation model for the North and South China collision and the development of the Tan-Lu and Honam fault systems, eastern Asia. Tectonics, 12, 801-813. https://doi.org/10.1029/93TC00313
  100. Yin, A. and Nie, S., 1996. A Phanerozoic palinspastic reconstruction of China and its neighboring regions. In: Yin, A., Harrison, T.M. (Eds.), Tectonic Evolution of Asia. Cambridge University Press, 442-485.
  101. Zhai, M., Guo, J., Li, Z., Chen, D., Peng, P., Li, T., Hou, Q. and Fan, Q., 2007. Linking the Sulu UHP belt to the Korean Peninsula: Evidence from eclogite, Precambrian basement, and Paleozoic sedimentary basins. Gondwana Research, 12, 388-403. https://doi.org/10.1016/j.gr.2007.02.003
  102. Zhai, M., Guo, J., Peng, P. and Hu, B., 2007. U-Pb zircon age dating of a rapakivi granite batholith in Rangnim massif, North Korea. Geological Magazine, 144, 547-552. https://doi.org/10.1017/S0016756807003287
  103. Zhai, M.G. and Guo, J., 2005. Discovery of eclogites and extension of Sulu UHP belt in South Korea. Mittleilungen Der Oserrechischen Mineralogischen Gesellschaft, 150, 172.
  104. Zhao, G., Cao, L., Wilde, S.A., Sun, M., Choe, W.J. and Li, S., 2006. Implications based on the first SHRIMP U-Pb zircon dating on Precambrian granitoid rocks in North Korea. Earth and Planetary Science Letters, 251, 365-379. https://doi.org/10.1016/j.epsl.2006.09.021

Cited by

  1. Paleoproterozoic magmatic and metamorphic events in the Hongcheon area, southern margin of the Northern Gyeonggi Massif in the Korean Peninsula, and their links to the Paleoproterozoic orogeny in the North China Craton vol.248, 2014, https://doi.org/10.1016/j.precamres.2014.04.003
  2. The metamorphic evolution from ultrahigh-temperature to amphibolite facies metamorphism in the Odaesan area after the collision between the North and South China Cratons in the Korean Peninsula vol.256-257, 2016, https://doi.org/10.1016/j.lithos.2016.03.019
  3. Lithospheric mantle signatures as revealed by zircon Hf isotopes of Late Triassic post-collisional plutons from the central Korean peninsula, and their tectonic implications vol.27, pp.2, 2015, https://doi.org/10.1111/ter.12135
  4. Geological heritages of the candidate site for National Geopark around the west coast of Chungcheongnam-do Province, Korea: Characteristics and values vol.52, pp.5, 2016, https://doi.org/10.14770/jgsk.2016.52.5.665
  5. Geochemistry, zircon U–Pb ages, and Hf isotopic compositions of Precambrian gneisses in the Wonju–Jechon area of the southern Gyeonggi Massif: Implications for the Precambrian tectonic evolution of Korea and northeast Asia vol.283, 2016, https://doi.org/10.1016/j.precamres.2016.07.014
  6. Mineral ages and zircon Hf isotopic composition of the Andong ultramafic complex: implications for the evolution of Mesozoic subduction system and subcontinental lithospheric mantle beneath SE Korea vol.151, pp.05, 2014, https://doi.org/10.1017/S0016756813000757
  7. Whereabouts of the collision belt between the Sino-Korean and South China blocks in the northeast Asian margin vol.17, pp.4, 2013, https://doi.org/10.1007/s12303-013-0057-4
  8. Tectonic, sedimentary, and volcanic evolution of a back-arc basin in the East Sea (Sea of Japan) vol.352, 2014, https://doi.org/10.1016/j.margeo.2014.03.004
  9. Phanerozoic polyphase orogenies recorded in the northeastern Okcheon Belt, Korea from SHRIMP U-Pb detrital zircon and K-Ar illite geochronologies 2017, https://doi.org/10.1016/j.jseaes.2017.08.002
  10. In situ U–Pb and Lu–Hf isotopic studies of zircons from the Sancheong–Hadong AMCG suite, Yeongnam Massif, Korea: Implications for the petrogenesis of ∼1.86 Ga massif-type anorthosite vol.138, 2017, https://doi.org/10.1016/j.jseaes.2017.02.038
  11. Detrital zircon ages in Korean mid-Paleozoic meta-sandstones (Imjingang Belt and Taean Formation): Constraints on tectonic and depositional setting, source regions and possible affinity with Chinese terranes vol.143, 2017, https://doi.org/10.1016/j.jseaes.2017.04.028
  12. Fast cooling following a Late Triassic metamorphic and magmatic pulse: implications for the tectonic evolution of the Korean collision belt vol.662, 2015, https://doi.org/10.1016/j.tecto.2015.06.016
  13. Zircon U-Pb geochronological and Hf isotopic constraints on the Precambrian crustal evolution of the north-eastern Yeongnam Massif, Korea vol.242, 2014, https://doi.org/10.1016/j.precamres.2013.12.008
  14. Contrasting source domains for the Phanerozoic granitoids in South Korea revealed by zircon Hf isotopic signatures vol.20, pp.5, 2016, https://doi.org/10.1007/s12303-016-0028-7
  15. LA-MC-ICPMS U-Pb Ages of the Detrital Zircons from the Baengnyeong Group: Implications of the Dominance of the Mesoproterozoic Zircons vol.49, pp.6, 2016, https://doi.org/10.9719/EEG.2016.49.6.433
  16. A massif-type (~1.86 Ga) anorthosite complex in the Yeongnam Massif, Korea: late-orogenic emplacement associated with the mantle delamination in the North China Craton vol.26, pp.5, 2014, https://doi.org/10.1111/ter.12115
  17. Triassic mafic and intermediate magmatism associated with continental collision between the North and South China Cratons in the Korean Peninsula vol.246-247, 2016, https://doi.org/10.1016/j.lithos.2015.12.026
  18. Geology of the 2018 Winter Olympic site, Pyeongchang, Korea vol.60, pp.3, 2018, https://doi.org/10.1080/00206814.2017.1340196
  19. SHRIMP U-Pb ages of detrital zircons from the Early Cretaceous Nakdong Formation, South East Korea: Timing of initiation of the Gyeongsang Basin and its provenance vol.27, pp.5, 2018, https://doi.org/10.1111/iar.12258
  20. Regional strike-slip and initial subsidence of Korea Plateau, East Sea: tectonic implications for the opening of back-arc basins vol.22, pp.4, 2018, https://doi.org/10.1007/s12303-018-0017-0
  21. The tectonic setting of the eastern margin of the Sino-Korean Block inferred from detrital zircon U–Pb age and Nd isotope composition of the Pyeongan Supergroup (upper Palaeozoic – Lower Triassic), Korea vol.156, pp.03, 2019, https://doi.org/10.1017/S0016756817000899