DOI QR코드

DOI QR Code

Effect of $NiAl_3$ on Mechanical Properties and Sintering of (W,Ti)C Hard Materials

$NiAl_3$ 첨가가 (W,Ti)C 초경재료 소결 및 기계적 성질에 미치는 영향

  • Park, Na-Ra (Division of Advanced Materials Engineering and the Research Center of Hydrogen and Fuel cell, Engineering College, Chonbuk National University) ;
  • Na, Kwon-Il (Division of Advanced Materials Engineering and the Research Center of Hydrogen and Fuel cell, Engineering College, Chonbuk National University) ;
  • Kwon, Hanjung (Minerals and Materials Processing Division, Korea Institute of Geoscience, Mining and Materials Resources) ;
  • Lim, Jae-Won (Minerals and Materials Processing Division, Korea Institute of Geoscience, Mining and Materials Resources) ;
  • Shon, In-Jin (Division of Advanced Materials Engineering and the Research Center of Hydrogen and Fuel cell, Engineering College, Chonbuk National University)
  • 박나라 (전북대학교 신소재공학부 수소연료전지센터) ;
  • 나권일 (전북대학교 신소재공학부 수소연료전지센터) ;
  • 권한중 (한국지질자원연구원) ;
  • 임재원 (한국지질자원연구원) ;
  • 손인진 (전북대학교 신소재공학부 수소연료전지센터)
  • Published : 2013.10.05

Abstract

Co or Ni was added to cemented (W,Ti)C as a binder for forming composite structures. The high cost of Co or Ni and the low corrosion resistance of (W,Ti)C-Co or (W,Ti)C-Ni cermet have generated interest in recent years in the search to find alternative binder phases. It has been reported that aluminides have a higher oxidation resistance, a higher hardness and are cheaper materials than Co and Ni. Using a pulsed current activated sintering (PCAS) method, the densification of (W,Ti)C and (W,Ti)C-$NiAl_3$ hard materials were accomplished within 3 minutes. The advantage of this process is not only rapid densification to near theoretical density but also the prohibition of grain growth in nano-structured materials. Highly dense (W,Ti)C and (W,Ti)C-$NiAl_3$ with a relative density of up to 99% were obtained within 3 minutes by PCAS under a pressure of 80 MPa. The average grain sizes of the (W,Ti)C was lower than 100 nm. The hardness and fracture toughness of the dense (W,Ti)C and (W,Ti)C-$NiAl_3$ produced by PCAS were also investigated.

Keywords

References

  1. S Imasato, K Tokumoto, T Kitada, and S Sakaguchi, Int. J. Refrac. Met. H. Mater. 13, 305 (1995). https://doi.org/10.1016/0263-4368(95)92676-B
  2. E. A. Almond and B. Roebuck, Mater. Sci. Eng. A 105, 237 (1988).
  3. G. Gille, J. Bredthauer, B. Gries, and B. Mende, Int. J. Refract Met. H. 18, 87 (2000). https://doi.org/10.1016/S0263-4368(00)00002-0
  4. P. Goeuriot and F. Thevenot, Cheram. Int. 13, 99 (1987). https://doi.org/10.1016/0272-8842(87)90045-9
  5. Z. G. Zhang, F. Gesmundo, P. Y. Hou, and Y. Niu, Corros. Sci. 48, 741 (2006). https://doi.org/10.1016/j.corsci.2005.01.012
  6. J. Karch, R. Birringer, and H. Gleiter. Nature 330, 556 (1987). https://doi.org/10.1038/330556a0
  7. A. M. George, J. Iniguuze, and L. Bellaiche, Nature 413, 54 (2001). https://doi.org/10.1038/35092530
  8. D. Hreniak and W. Strek, J. Alloys Comp. 341, 183 (2002). https://doi.org/10.1016/S0925-8388(02)00067-1
  9. I. J. Shon, K. I. Na, J. M. Doh, H. K. Park, and J. K. Yoon, Met. Mater. Int. 19, 99 (2013). https://doi.org/10.1007/s12540-013-1016-3
  10. Z. Fang and J. W. Eason, Int. J. Refrac. Met. H. Mater. 13, 297 (1995). https://doi.org/10.1016/0263-4368(95)92675-A
  11. A. I. Y. Tok, I. H. Luo, and F. Y. C. Boey, J. Mate. Sci. Eng. A 383, 229 (2004). https://doi.org/10.1016/j.msea.2004.05.071
  12. S. L. Du, S. H. Cho, I. Y. Ko, J. M. Doh, J. K. Yoon, S. W. Park, and I. J. Shon, Korean J. Met. Mater. 49, 231 (2011). https://doi.org/10.3365/KJMM.2011.49.3.231
  13. H. S. Kang, I. Y. Ko, J. K. Yoon, J. M. Doh, K. T. Hong, and I. J. Shon, Met. Mater. Int. 17, 57 (2011). https://doi.org/10.1007/s12540-011-0208-y
  14. I. J. Shon, H. Y. Song, S. W. Cho, W. B. Kim, and C. Y. Suh, Korean J. Met. Mater. 50, 39 (2012). https://doi.org/10.3365/KJMM.2012.50.1.039
  15. C. Suryanarayan and M. Grant Norton, X-ray Diffraction A Practical Approach, Plenum Press, New York (1998).
  16. I. J. Shon, G. W. Lee, J. M. Doh, and J. K. Yoon, Electron. Mater. Lett. 9, 219 (2013). https://doi.org/10.1007/s13391-012-2142-7
  17. Z. A. Munir, D. Quach, and M. Ohyanagi, J. Am. Ceram. Soc. 94, 1 (2011). https://doi.org/10.1111/j.1551-2916.2010.04210.x
  18. G. S. Upadhyaya, Materials & Design 22, 483 (2001). https://doi.org/10.1016/S0261-3069(01)00007-3
  19. J. E. Garay, U. Anselmi-Tamburini, Z. A. Munir, S. C. Glade, and P. Asoka- Kumar, Appl. Phys. Lett. 85, 573 (2004). https://doi.org/10.1063/1.1774268
  20. J. R. Friedman, J. E. Garay. U. Anselmi-Tamburini, and Z. A. Munir, Intermetallics 12, 589 (2004). https://doi.org/10.1016/j.intermet.2004.02.005
  21. J. E. Garay, J. E. Garay. U. Anselmi-Tamburini, and Z. A. Munir, Acta Mater. 51, 4487 (2003). https://doi.org/10.1016/S1359-6454(03)00284-2
  22. K. Niihara, R. Morena, and D. P. H. Hasselman, J. Mater. Sci. Lett. 1, 12 (1982).
  23. I. J. Shon, I. K. Jeong, I. Y. Ko, J. M. Doh, and K. D. Woo, Ceram. Inter. 35, 339 (2009). https://doi.org/10.1016/j.ceramint.2007.11.003