DOI QR코드

DOI QR Code

Physicochemical Changes in Hemerocallis coreana Nakai After Blanching, Drying, and Fermentation

원추리(Hemerocallis coreana Nakai)의 데침, 건조 및 발효조건에 따른 이화학적 특성 변화

  • Jeong, Ji-Suk (Wild Flower Institute, Gurye-gun Agricultural Center) ;
  • Kim, Yong-Joo (Wild Flower Institute, Gurye-gun Agricultural Center) ;
  • Choi, Bo-Rum (Wild Flower Institute, Gurye-gun Agricultural Center) ;
  • Park, No-Jin (Dept. of Research and Development of Resources, Gurye-gun Agricultural Center) ;
  • Son, Byeong-Gil (Dept. of Research and Development of Resources, Gurye-gun Agricultural Center) ;
  • Kwak, Young-Se (Wild Flower Institute, Gurye-gun Agricultural Center) ;
  • Kim, Jong-Cheol (Institute of Hadong Green Tea) ;
  • Cho, Kyoung-Hwan (Institute of Hadong Green Tea) ;
  • Kim, In-Ho (Dept. of Food Science and Technology, Daegu University) ;
  • Kim, Seong-Ho (Dept. of Food Science and Technology, Daegu University)
  • 정지숙 (구례군농업기술센터 야생화연구소) ;
  • 김용주 (구례군농업기술센터 야생화연구소) ;
  • 최보름 (구례군농업기술센터 야생화연구소) ;
  • 박노진 (구례군농업기술센터 자원연구개발과) ;
  • 손병길 (구례군농업기술센터 자원연구개발과) ;
  • 곽영세 (구례군농업기술센터 야생화연구소) ;
  • 김종철 ((재)하동녹차연구소) ;
  • 조경환 ((재)하동녹차연구소) ;
  • 김인호 (대구대학교 식품공학과) ;
  • 김성호 (대구대학교 식품공학과)
  • Received : 2013.06.07
  • Accepted : 2013.07.09
  • Published : 2013.10.31

Abstract

To promote the utilization of wild edible plants, this study examined blanching, drying, and fermentation as methods for enhancing the functionality of Hemerocallis coreana Nakai. Specimens fermented for 24 hours at a fermentation temperature of $50^{\circ}C$, with a relative humidity of 65%, contained the highest amount of organic acid (18,109.82 mg/100 g). For the blanched; specimens, total organic acid content decreased about 30% compared with the freeze-dried specimens. The main organic acid of Hemerocallis coreana Nakai was confirmed as succinic acid. After fermentation, free sugars decreased; in particular, specimens fermented at a relative humidity of 80% showed a 32~75% reduction in free sugar compared with the freeze-dried specimens. In terms of amino acid content, Hemerocallis coreana Nakai was mainly composed of valine, isoleucine, and phenylalanine. In fermented specimens the total amino acid content was highest in a moderately fermented (17 hr) specimen, (1,010.71 mg/100 g fresh wt.), but decreased in the maximally fermented (24 hr) specimen. The longer the fermentation, the higher the decrease in non-essential amino acids content, while the content of more essential amino acids consistently increased. In conclusion, since seasoned Hemerocallis coreana Nakai contains a considerable amount of glutamine and asparagine, it has a fresh sour and sweet taste; thus, it will likely be a highly preferred wild edible plant. Also, with an increase of essential amino acids after fermentation, Hemerocallis coreana Nakai is excellent in terms of nutrition. Thus, it may be possible to utilize fermented Hemerocallis coreana Nakai in the development of diverse products.

본 연구는 나물 활용도를 증진시키기 위해 원추리의 기능성을 높이고자 발효를 시도하였으며, 건조조건 및 데침에 따른 이화학적 특성 변화를 조사하였다. 원추리의 수분함량은 85.60%로 연백부분의 수분함량이 높았다. 데침, 건조조건 및 발효조건에 따른 에탄올추출물의 수율은 11.0~30.5%로 차이를 보였다. 유기산의 종류로는 citric acid, tartaric acid, malic acid, succinic acid가 검출되었으며, 발효 후에는 acetic acid가 추가로 검출되었다. Oxalic acid와 lactic acid는 검출되지 않았다. 총 유기산 함량은 발효온도 $50^{\circ}C$, 발효습도 65%에서 24시간 발효한 시료가 18,109.82 mg/100 g으로 가장 높았으며, 데친 후 열풍건조 시료는 동결건조 시료에 비해 총 유기산 함량이 30% 정도로 감소하였다. 원추리나물의 주요 유기산은 succinic acid인 것으로 확인되었다. 동결건조 시료의 총 유리당 함량이 13,086.45 mg/100 g으로 가장 높았으며, glucose가 6573.24 mg/100 g, fructose가 3,562.49 mg/100 g으로 가장 높게 검출되어 원추리나물의 주요 유리당은 glucose와 fructose로 확인되었다. 발효 후에는 대부분의 유리당이 감소하였으며, 특히 발효습도 80%에서 발효한 시료가 동결건조 시료에 비해 모든 유리당이 32~75% 감소하였다. Glucose와 fructose는 citric acid, tartaric acid, malic acid, succinic acid의 생성에 양의 상관관계를 보였으며, sucrose와 maltose는 citric acid 생성에 양의 상관관계, tartaric acid, malic acid, succinic acid 생성에는 음의 상관관계를 보였다. 원추리나물에는 필수아미노산인 valine, methionine, leucine, threonine, phenylalanine, tryptophan, lysine의 8종과 비필수아미노산 11종이 검출되었다. 원추리나물은 주로 valine, isoleucine, phenylalanine이 차지하였으며, 열풍건조 시료가 동결건조 시료보다 약 2~2.9배 증가하여 유의적인 차이를 보였다. 발효조건에 따른 시료에서는 총 아미노산 함량이 중발효(17시간 발효) 시료가 1,010.71 mg/100 g fresh wt.로 가장 높았으며, 강발효(24시간) 시료에서는 오히려 감소하였다. 발효시간이 길어질수록 비필수아미노산 함량은 감소하였으나 필수아미노산의 함량은 지속적으로 증가하는 경향이었다. 원추리나물에는 상당량의 glutamine과 asparagine을 함유하고 있어 풋풋한 신맛과 다양한 아미노산에 의해 단맛을 주는 나물로 평가되어 기호도가 높은 산채류로 활용가능성이 높을 것으로 판단된다. 또한 발효 후에는 필수아미노산의 함량이 증가함으로써 영양학적으로도 우수한 결과를 나타내었다. 따라서 본 연구 결과에서는 나물로만 섭취하던 원추리를 발효함으로써 향후 다양한 제품 개발에 활용할 수 있을 것으로 판단된다.

Keywords

References

  1. Lee JY, Chae SK, Kim KD. 2011. The perceptions and purchase intentions of health food consumers. Korean J Food Preserv 18: 103-110. https://doi.org/10.11002/kjfp.2011.18.1.103
  2. Yoon JH, Kim KH. 2007. Biological functions of wild edible greens. Annals of Plant Resources Research 6: 219-243.
  3. Shahidi F, Naczk M. 1995. Food phenolics: an overview. In Food Phenolics: Sources, Chemistry, Effects, Applications. Technomic Publishing Company Inc, Lancaster, PA, USA. p 1-5.
  4. Sol M. 2011. Good for our body, herbs dictionary. Greenhome, Seoul, Korea. p 190-192.
  5. Ham SS. 2011. Delicious wild edible greens to become a medicine to eat, 57 kinds of wild edible green superior antitumor effect. Academy-book, Seoul, Korea. p 245-247.
  6. Chung MG, Kang SS. 1994. Morphometric analysis of the genus Hemerocallis L. (Liliaceae) in Korea. J Plant Res 107: 165-175. https://doi.org/10.1007/BF02346013
  7. Noguchi J. 1986. Geographical and ecological differentiation in the Hemerocallis dumortieri complex with special reference to its karyology. J Sci Hiroshima Univ Ser B Div 2 (Botany) 20: 29-193.
  8. Ahn MS. 1998. Inter-specific and generic hybridization study of wild Hemerocallis fulva L. and Lilium spp. Research report of Jeoilabuk-do Agricultural Research. p 507-511.
  9. Kim EH, Kim SD, Cho JT. 1994. Early-planting culture on the test in Hemerocallis fulva L. Research report of Chungcheongbuk-do Argricultural Research. p 371-374.
  10. Shin JH. 1993. Studies on germination and growth of native wild Hemerocallis spp. MS Thesis. Chungbuk National University, Chungbuk, Korea.
  11. Cho KJ. 1990. Hygiene of Hemerocallis fulva L.. Seojinkack, Seoul, Korea. p 1-216.
  12. Lee JJ, Jung HO. 2012. Changes in physicochemical properties of Spergularia marina Griseb by blanching. Korean J Food Preserv 19: 866-872. https://doi.org/10.11002/kjfp.2012.19.6.866
  13. Kim MH, Jang HL, Yoon KY. 2012. Changes in physicochemical properties of Haetsun vegetables by blanching. J Korean Soc Food Sci Nutr 41: 647-654. https://doi.org/10.3746/jkfn.2012.41.5.647
  14. Lee HO, Kim JY, Kim GH, Kim BS. 2012. Quality characteristics of frozen Aster scaber according to various blanching treatment conditions. J Korean Soc Food Sci Nutr 41: 246-253. https://doi.org/10.3746/jkfn.2012.41.2.246
  15. Lee YM, Bae JH, Jung HY, Kim JH, Park DS. 2011. Antioxidant activity in water and methanol extracts from Korean edible wild plants. J Korean Soc Food Sci Nutr 40: 29-36. https://doi.org/10.3746/jkfn.2011.40.1.029
  16. Kim DH, An BJ, Kim SG, Park TS, Park GH, Son JH. 2011. Anti-inflammatory effect of Ligularia fischeri, Solidago virga-aurea and Aruncus dioicus complex extracts in Raw 264.7 cells. J Life Sci 21: 678-683. https://doi.org/10.5352/JLS.2011.21.5.678
  17. Lee HN, Lim DY, Lim SS, Kim JD, Park HY. 2011. Anti-inflammatory effect of ethanol extract from Eupatorium japonicum. Korean J Food Sci Technol 43: 65-71. https://doi.org/10.9721/KJFST.2011.43.1.065
  18. Ahn SM, Choi TH, Kwun IS, Sohn HY. 2011. Antifungal activity of methylene chloride fraction of Pimpinella brachycarpa against Aspergillus niger. Korean J Microbiol Biotechnol 39: 168-174.
  19. Ahn SM, Kim MS, Jung IC, Sohn HY. 2011. Antibacterial, antioxidative and anti-proliferative activity against human colorectal cell of Pimpinella brachycarpa. Korean J Food Preserv 18: 590-596. https://doi.org/10.11002/kjfp.2011.18.4.590
  20. Choi JY, Kim HM, Mok SY, Choi K, Ku J, Park KW, Cho EJ, Lee S. 2012. Antibacterial activity and protective role against gastric cancer by Sedum sarmentosum. J Appl Biol Chem 55: 157-161. https://doi.org/10.3839/jabc.2012.024
  21. Lim DH, An BJ, Kim SG, Park TS, Park GH, Son JH. 2011. Antimelanogenic effect of Ligularia fischeri, Solidago virga-aurea, Aruncus dioicus extracts from Ullung island in murine melanoma cells. J Life Sci 21: 279-285. https://doi.org/10.5352/JLS.2011.21.2.279
  22. Ham SS. 1988. Desmutagenic activity of heated mountain herb juices. J Korean Agric Chem Soc 31: 38-45.
  23. Kim YD, Yang WM. 1986. Studies on the components of wild vegetables in Korea. J Korean Soc Food Nutr 15: 10-16.
  24. Kim JS, Kang SS, Son KH, Chang HW, Kim HP, Bae KH. 2002. Constituents from the roots of Hemerocallis fulva. Kor J Pharmacogn 33: 105-109.
  25. Kim ES, Choi SJ, Ryu BH, Choi JH, Oh MS, Park WJ, Choi YW, Paik DH, Ha KC, Kang DO, Cho YK, Park KT, Moon JY. 2006. Protective effects of Hemerocallis fulva extracts on amyloid ${\beta}$-protein-induced death in neuronal cells. J Korean Oriental Med 27: 122-133.
  26. Yun JS, Chung BH, Kim NY, Seong NS, Lee HY, Lee JH, Kim JD. 2003. Screening of 94 plant species showing ACE inhibitory activity. Korean J Medicinal Crop Sci 11: 246-251.
  27. Do DS, Lee SM, Na MK, Bae KH. 2002. Antimicrobial activity of medicinal plant extracts against a cariogenic bacterium, Streptococcus mutans OMZ 176. Kor J Pharmacogn 33: 319-323.
  28. Cho JY, Kim HG, Yang SY, Park YJ, Kim HJ, Heo BG. 2007. Effects of the different concentration of the nutrient solution on the growth and the inorganic matter contents of three kinds of fall planting namul resources in water culture. J Bio-Environment Control 16: 7-12.
  29. Choi SH. 1999. World and right to know drinking of Korea tea. Seowon, Seoul, Korea. p 19-137.
  30. Chung DH, Kim CT. 1997. Science of tea. Daekwangsorim bookstore, Seoul, Korea. p 25-261.
  31. Jung DH, Kim JT. 2003. Science of Tea. Daekwang publisher, Jeonju, Korea. p 51-53.
  32. Choi OJ, Choi KH. 2003. The physicochemical properties of Korean wild teas (green tea, semi-fermented tea, and black tea) according to degree of fermentation. J Korean Soc Food Sci Nutr 32: 356-362. https://doi.org/10.3746/jkfn.2003.32.3.356
  33. Kim YS, Jo CU, Choi GH, Lee KH. 2011. Changes of antioxidative components and activity of fermented tea during fermentation period. J Korean Soc Food Sci Nutr 40: 1073-1078. https://doi.org/10.3746/jkfn.2011.40.8.1073
  34. KFDA. 2007. Study of the safety evaluation for fermentation tea. Report of Korea Food & Drug Administration. p 15-102.
  35. Chen H, Qu Z, Fu L, Dong P, Zhang X. 2009. Physicochemical properties and antioxidant capacity of 3 polysaccharides from green tea, oolong tea, and black tea. J Food Sci 74: C469-C474. https://doi.org/10.1111/j.1750-3841.2009.01231.x
  36. Lee KS, Seong BJ, Kim GH, Kim SI, Han SH, Kim HH, Baik ND. 2010. Ginsenoside, phenolic acid composition and physiological significances of fermented ginseng leaf. J Korean Soc Food Sci Nutr 39: 1194-1200. https://doi.org/10.3746/jkfn.2010.39.8.1194
  37. Bae MJ, Ye EJ. 2010. Analyses of active components and quality characteristics in the manufacturing of fermented mulberry leaf (Morus alba) tea. J Korean Soc Food Sci Nutr 39: 859-863. https://doi.org/10.3746/jkfn.2010.39.6.859
  38. Lee SI, Lee YK, Kim SD, Yang SH, Suh JW. 2012. Dietary effects of post-fermented green tea Monascus pilosus on the body weight, serum lipid profiles and the activities of hepatic antioxidative enzymes in mouse fed a high fat diet. J Appl Biol Chem 55: 85-94. https://doi.org/10.3839/jabc.2011.064
  39. Cha YJ, Lee JW, Kim JH, Park MH, Lee SY. 2004. Major components of teas manufactured with leaf and flower of Korean native Camellia japonica L. Korean J Medicinal Crop Sci 12: 183-190.
  40. Park SY, Lee SJ. 2011. The analysis of the physiologic activities of the Jeju teas according to the fermentational degree. Korean J Plant Res 24: 236-242. https://doi.org/10.7732/kjpr.2011.24.2.236
  41. Kim DH, Lim DW, Bai S, Chun SB. 1997. Fermentation characteristics of whole soybean meju model system inoculated with 4 Bacillus strains. Korean J Food Sci Technol 29: 1006-1015.
  42. Gancedo MC, Luh BS. 1986. HPLC analysis of organic acid and sugars in tomato juice. J Food Sci 51: 571-573. https://doi.org/10.1111/j.1365-2621.1986.tb13881.x
  43. Mun MI, Xu M, Park YD, Hur Y. 2009. Organic nutrition and gene expression in different tissues of chinese cabbage. Hort Environ Biotechnol 50: 166-174.
  44. Woo CG, Park CH, Yoon HH. 2000. Production of acetic acid from cellulosic biomass. Korean J Biotechnol Bioeng 15: 458-463.
  45. Shahidi F, Rubin LJ, D'Souza LA. 1986. Meat flavor volatiles: a review of composition, techniques of analysis, and sensory evaluation. Crit Rev Food Sci Nutr 24: 141-243. https://doi.org/10.1080/10408398609527435
  46. Park JH. 1997. Studies on the distribution of the chemical components in different position of tea leaves. J Korean Tea Soc 3: 47-56.
  47. Chun JU. 2009. Change in traits related to surface color of differently fermented tea products. J Korean Tea Soc 15: 77-83.

Cited by

  1. Antioxidant and Physicochemical Changes in Salvia plebeia R. Br. after Hot-air Drying and Blanching vol.43, pp.6, 2014, https://doi.org/10.3746/jkfn.2014.43.6.893
  2. Comparative analysis of elemental compositions of selected edible wild plants vol.25, pp.3, 2018, https://doi.org/10.11002/kjfp.2018.25.3.330
  3. 건조방법에 따른 고사리와 취나물의 이화학적 및 관능적 특성 vol.23, pp.6, 2013, https://doi.org/10.11002/kjfp.2016.23.6.819