DOI QR코드

DOI QR Code

Building Damage Functions Using Limited Available Data for Volcanic Ash Loss Estimation

가용자료가 제한된 경우 화산재 피해 예측을 위한 손상함수 구축

  • Yu, Soonyoung (Division of Computational Sciences in Mathematics, National Institute of Mathematical Sciences) ;
  • Yoon, Seong-Min (Department of Economics, Pusan National University) ;
  • Jiang, Zhuhua (Research Institute for Social Criticality, Pusan National University) ;
  • Choi, Miran (Division of Computational Sciences in Mathematics, National Institute of Mathematical Sciences)
  • 유순영 (국가수리과학연구소 계산수학연구부) ;
  • 윤성민 (부산대학교 경제학부) ;
  • 강주화 (부산대학교 사회급변현상연구소) ;
  • 최미란 (국가수리과학연구소 계산수학연구부)
  • Received : 2013.09.23
  • Accepted : 2013.10.10
  • Published : 2013.10.31

Abstract

Catastrophe risk models require the damage functions of each vulnerable item in inventory to estimate volcanic ash losses. The damage functions are used to represent the relation between damage factors and damage and also widely used in engineering and natural hazard studies to calculate the vulnerability. In most cases, damage functions are constructed as fragility or vulnerability curves, and researchers are confused by the similarities between them particularly when they perform interdisciplinary research. Thus, we aim to explain the similarities and differences between fragility and vulnerability curves and their relationship by providing case studies to construct them. In addition, we suggest a simple method to construct the damage functions between damage ratio and volcanic ash thickness using limited damage data. This study comes from the fact that damage functions are generally constructed using damage data. However, there is no available volcanic ash damage data in Korea, and not even enough volcanic disaster data to construct damage functions in the world, compared to other hazards. Using the method suggested in the study and the limited damage data from Japan and New Zealand, we construct Weibull-type functions or linear functions dependent of available data to calculate volcanic ash loss estimation, which we think need to be corrected to make it more suitable for inventory characteristics and environmental conditions in Korea.

재난 리스크 모델을 활용하여 화산재 손실을 평가하기 위해서는 목적물별 손상함수가 정의되어야 한다. 손상함수란 목적물의 재해취약도를 정량화한 함수로, 공학 및 자연재해 연구 분야에서 널리 사용되고 있다. 특히 손상도, 취약성 곡선 등으로 연구되고 있는데, 학제간 연구를 수행하는 과정에서 혼란을 주기도 한다. 이에 본 연구는 손상함수의 유형을 정리하고, 손상함수를 구축한 사례를 소개하고자 한다. 손상함수는 일반적으로 과거 피해사례를 기반으로 구축된다. 국내에 화산재 피해사례가 없음을 고려할 때, 남한지역의 화산재 손상함수를 구축하기 위해서는 해외사례를 참고하여야 할 것이다. 한편 국외에서도 화산재에 대한 손상함수 연구는 다른 재난에 비해 적은데, 화산 피해사례도 적은편이다. 이에 본 연구는 극소수 피해자료를 활용하여 손상함수를 구축할 수 있는 방안을 제시하고, 뉴질랜드와 일본에서 보고된 실제 피해사례를 바탕으로 와이블함수 혹은 선형함수의 취약성 곡선을 구축하였다. 본 연구가 해외사례를 기반으로 손상함수를 구축하였음을 고려할 때, 본 연구에서 제시하는 손상함수를 이용하여 남한지역의 화산재 손실을 평가하기 위해서는 국내 목적물 특성 및 환경 조건에 맞게 손상함수를 보정할 필요가 있다.

Keywords

References

  1. Al-Fawzan, M.A., 2000, Methods for estimating the parameters of the Weibull distribution. http://interstat.statjournals.net/YEAR/2000/articles/0010001.pdf (October 6th 2013)
  2. Cabinet Office of Japan, 2002, Damage estimation of a historic eruption of Mount Fuji. Cabinet Office of Japan, 7-7 p. (in Japanese)
  3. Cutter, S.L., Boruff, B.J., and Shirley, W.L., 2003, Social vulnerability to environmental hazards. Social Science Quarterly, 84, 242-261. https://doi.org/10.1111/1540-6237.8402002
  4. DOGAMI (Oregon Department of Geology and Mineral Industries), 2012, Mount Hood Multi-Hazards Risk Study. http://www.oregongeology.org/pubs/fs/mthoodfactsheet.pdf (October 6th 2013)
  5. FEMA (Federal Emergency Management Agency), 2003, Multi-hazard loss estimation methodology earthquake model $Hazus^{(R)MH}$ MR4 technical manual. Federal Emergency Management Agency, 17-3p.
  6. GNS Science, 2012, Volcanic hazards: ash fall. http://gns.cri.nz/Home/Learning/Science-Topics/Volcanoes/Volcanic-Hazards/Ash-fall (October 6th 2013)
  7. Haugen, E.D. and Kaynia A.M, 2008, Vulnerability of structures impacted by debris flow. In Chen, Z., Zhang, J., Li, Z., Wu, F., and Ho, K. (e.d.), Landslides and Engineered Slopes. Taylor & Francis Group, London, UK, 381-387.
  8. Japan Meteorological Agency, 2013, Impacts and countermeasures of volcanic ash. Japan Meteorological Agency, 27p. (in Japanese)
  9. KDPA (Korea Disaster Prevention Association), 2011, Study on the natural hazard loss estimation methodology. Korea Disaster Prevention Association, 138p. (in Korean)
  10. KIGAM (Korean Institute of Geoscience and Mineral Resources), 2009, Assessment and countermeasure for asian dust hazard. National Emergency Management Agency, 708p. (in Korean)
  11. Langmann, B., 2013, Volcanic ash versus mineral dust: atmospheric processing and environmental and climate impacts. Atmospheric Sciences, 2013, 1-17.
  12. Lee, S.-H. and Yun, S.-H., 2011, Impact of meteorological wind fields average on predicting volcanic tephra dispersion of Mt. Baekdu. Journal of Korean Earth Science Society, 32, 360-371. (in Korean) https://doi.org/10.5467/JKESS.2011.32.4.360
  13. Lee, S.-H., Jang, E.-S., and Lee, H.-M., 2012, A case analysis of volcanic ash dispersion under various volcanic explosivity index of the Mt. Baegdu. Journal of Korean Earth Science Society, 33, 280-293. (in Korean) https://doi.org/10.5467/JKESS.2012.33.3.280
  14. Lowe, C.J., 2010, Analyzing vulnerability to volcanic hazards: application to St. Vincent. Ph.D. dissertation, University College London, London, UK, 383 p.
  15. NIDP (National Institute for Disaster Prevention), 2007, Development of $the^{\circ\circ}$ fragility functions of industrial buildings due to wind hazard in Korea. National Institute for Disaster Prevention, 230 p. (in Korean)
  16. Quan Luna, B., Blahut, J., van Westen, C.J., Sterlacchini, S., van Asch, T.W.J., and Akbas, S.O., 2011, The application of numerical debris flow modelling for the generation of physical vulnerability curves. Natural Hazards Earth System Sciences, 11, 2047-2060. https://doi.org/10.5194/nhess-11-2047-2011
  17. Rossetto, T., Ioannou, I., and Grant, D.N., 2013, Existing empirical vulnerability and fragility functions: compendium and guide for selection. GEM Foundation, 63 p.
  18. Scawthorn, C., Flores, P., Blais, N., Seligson, H., Tate, E., Chang, S., Mifflin, E., Thomas, W., Murphy, J., Jones, C., and Lawrence, M., 2006, Hazus-MH flood loss estimation methodology II. damage and loss assessment. Natural Hazards Review, 7, 72-81. https://doi.org/10.1061/(ASCE)1527-6988(2006)7:2(72)
  19. Shinozuka, M., Feng, M.Q., Kim, H., Uzawa, T., and Ueda, T., 2001, Statistical analysis of fragility curves. http://shinozuka.eng.uci.edu/Pdf/RepFrag.pdf (October 6th 2013)
  20. Spence, R.J.S., Kelman, I., Baxter, P.J., Zuccaro, G., and Petrazzuoli, S., 2005, Residential building and occupant vulnerability to tephra fall. Natural Hazards and Earth System Sciences, 5, 477-494. https://doi.org/10.5194/nhess-5-477-2005
  21. Totschnig, R. and Fuchs, S., 2013, Mountain torrents: quantifying vulnerability and assessing uncertainties. Engineering Geology, 155, 31-44. https://doi.org/10.1016/j.enggeo.2012.12.019
  22. USGS (United State Geological Survey), 2009, Types of Volcano Hazards. http://volcanoes.usgs.gov/hazards/index.php (October 6th 2013)
  23. Vickery, P.J., Skerlj, P.F., Lin, J., Twisdale, L.A., Young, M.A., and Lavelle, F.M., 2006, Hazus-MH hurricane model methodology. II: damage and loss estimation. Natural Hazards Review, 7, 94-103. https://doi.org/10.1061/(ASCE)1527-6988(2006)7:2(94)
  24. Wen, Y.K., Ellingwood, B.R., and Bracci, J., 2004, Vulnerability function framework for consequence-based engineering. Mid-America Earthquake Center, 101p.
  25. Whittaker, A., Deierlein, G., Hooper, J., and Merovich, 2004, Engineering demand parameters for structural framing systems. Applied Technology Council, ATC-58 Project Task Report, 19p.
  26. Wikipedia, 2013, Weibull distribution. http://en.wikipedia.org/wiki/Weibull_distribution (October 6th 2013)
  27. Wilson, T.M. and Kaye, G.D., 2007, Agricultural fragility estimates for volcanic ash fall hazards. GNS Science, Report 2007/37, 51p.
  28. Yi, C.S., Park, K., Choi, S.A., and Shim, M.P., 2006, Water allocation by estimation of damage function in a water-deficit situation. Journal of Korea Water Resources Association, 39, 431-440. (in Korean) https://doi.org/10.3741/JKWRA.2006.39.5.431
  29. Yu, S. and An, H., 2013, Study of flood loss estimation using Hazus-MH 2.1. Journal of Risk Management, 24, 29-57. (in Korean) https://doi.org/10.21480/tjrm.24.1.201306.002
  30. Yun, S.H. and Cui, Z.X., 1996, Historical eruption records on the cheonji caldera volcano in the Mt. Paektu. Journal of Korean Earth Science Society, 27, 376-382. (in Korean)
  31. Yun, S.H. and Lee, J.H, 2012, Analysis of unrest signs of activity at the Baegdusan volcano. Journal of Petrological Society of Korea, 21, 1-12. (in Korean) https://doi.org/10.7854/JPSK.2012.21.1.001

Cited by

  1. Numerical Simulation of Volcanic Ash Dispersion and Deposition during 2011 Eruption of Mt. Kirishima vol.35, pp.4, 2014, https://doi.org/10.5467/JKESS.2014.35.4.237