DOI QR코드

DOI QR Code

Evaluation of Thermal Conductivity for Screen-Printed AlN Layer on Al Substrate in Thickness Direction

알루미늄 기판에 스크린 인쇄한 AlN 후막의 두께 방향으로 열전도도 평가

  • Kim, Jong-Gu (Division of Materials Science and Engineering, Pusan National University) ;
  • Park, Hong-Seok (Division of Materials Science and Engineering, Pusan National University) ;
  • Kim, Hyun (Division of Materials Science and Engineering, Pusan National University) ;
  • Hahn, Byung-Dong (Korea Institute of Materials Science) ;
  • Cho, Young-Rae (Division of Materials Science and Engineering, Pusan National University)
  • Received : 2015.12.07
  • Accepted : 2015.12.28
  • Published : 2015.12.30

Abstract

A study on thermal properties for a single-layer metal and two-layer composites was investigated for the heat-sink application. For the single-layer metal, an aluminum alloy (Al6061) was selected. A screen printed aluminum nitride (AlN) layer on the Al6061 substrate was chosen for the two-layer composites. The thermal conductivity of the sample was determined from the thermal diffusivity measured by the light flash analysis (LFA), specific heat and density. Measured thermal property values were compared to calculated values using the data from the references. The thermal conductivity of composites with screen printed AlN layer on the Al6061 substrate decreased linearly with increasing the thickness of AlN layer. Measured values of the thermal conductivity for composites with $53{\mu}m$ and $163{\mu}m$ thick AlN layers were $114.1W/m{\cdot}K$ and $72.3W/m{\cdot}K$, respectively. In particular, the thermal conductivity of the screen-printed AlN layer was demonstrated by appling the rule of mixture in view point of thermal resistivity. Measured values of the thermal conductivity for AlN layers with the thickness of $53{\mu}m$ and $163{\mu}m$ showed $9.35W/m{\cdot}K$ and $12.40W/m{\cdot}K$, respectively.

히트 싱크용 소재에 응용할 목적으로 단층금속과 2층 단면구조 복합재료에 대해 열전도 특성을 연구하였다. 단층금속으로는 알루미늄합금(Al6061)을 사용했으며, 2층 단면구조 복합재료로는 Al6061기판에 질화알루미늄(AlN)을 스크린 인쇄한 층상구조 복합재료를 선택하였다. 섬광법으로 측정한 열확산계수와 비열 및 밀도를 사용해서 열전도도를 측정하였다. 실험을 통해 얻은 열전도 특성 값을 참고문헌에 보고된 자료를 사용해 계산한 값과 비교하였다. Al6061 기판에 스크린인쇄법으로 AlN 후막을 형성시킨 2층 단면구조 복합재료 시편의 열전도도는 AlN 후막의 두께가 증가할수록 선형적으로 감소하였다. 측정한 복합재료의 열전도도는 두께가 $53{\mu}m$$163{\mu}m$일 때, 각각 $114.1W/m{\cdot}K$$72.3W/m{\cdot}K$로 나타났다. 또한, 스크린 인쇄한 AlN 후막의 열전도도를 열전도비저항에 대한 혼합법칙을 적용해서 평가하였다. AlN 후막의 두께가 $53{\mu}m$$163{\mu}m$인 경우, 스크린 인쇄한 AlN 후막의 열전도도는 각각 $9.35W/m{\cdot}K$$12.40W/m{\cdot}K$로 나타났다.

Keywords

References

  1. W. Suh, H. S. Jung, Y. H. Lee, Y. H. Kim and S. H. Choa, "Heat Dissipation Technology of IGBT Module Package", J. Microelectron. Packag. Soc., 21(3), 7 (2014). https://doi.org/10.6117/kmeps.2014.21.3.007
  2. Y. J. Heo, H. T. Kim, K. J. Kim, S. Nahm, Y. J. Yoon and J. Kim, "Enhanced Heat Transfer by Room Temperature Deposition of AlN Film on Aluminum for a Light Emitting Diode Package", Appl. Therm. Eng., 50, 799 (2013). https://doi.org/10.1016/j.applthermaleng.2012.07.024
  3. I. G. Kim, M. E. Son and Y. S. Kim, "Fabrication of the Cu-STS-Cu Clad Metal for High Strength Electric Device Lead Frame and Thermal Stability on Their Physical Properties", Journal of KWJS, 32(5), 80 (2014).
  4. W. Feng, L. Zhang, Y. Liu, X. Li, L. Cheng and B. Chen, "Thermal Mechanical Properties of SiC/SiC-CNTs Composites Fabricated by CVI Combined with Electrophoretic Deposition", Mater. Sci. Eng., A626, 500 (2015).
  5. S. M. Na, S. I. Go and S. J. Lee, "Observation of Thermal Conductivity of Pressureless Sintered AlN Ceramics under Control of $Y_2O_2$ Content and Sintering Condition", J. Kor. Ceram. Soc., 48(5), 368 (2011). https://doi.org/10.4191/kcers.2011.48.5.368
  6. Y. W. Kim, H. C. Park and K. D. Oh, "Effect of AlN Addition on the Thermal Conductivity of Sintered $Al_2O_3$", J. Kor. Ceram. Soc., 33(3), 285 (1996).
  7. G. Kim, K. M. Jung, J. T. Moon and J. H. Lee, "Electrical Resistivity and Thermal Conductivity of Paste Containing Ag-Coated Cu Flake Filler", J. Microelectron. Packag. Soc., 21(4), 51 (2014). https://doi.org/10.6117/kmeps.2014.21.4.051
  8. J. W. Roh, S. Y. Jang, J. Kang, S. Lee, J. S. Noh, J. Park and W. Lee, "Thermal Conductivity in Individual Single-Crystalline PbTe Nanowires", Kor. J. Met. Mater., 48(2), 175 (2010). https://doi.org/10.3365/KJMM.2010.48.02.175
  9. M. Abdel-Rahman, S. Ilahi, M. F. Zia, M. Debbar, N. Yacoubi and B. Ilahi, "Temperature Coefficient of Resistance and Thermal Conductivity of Vanadium Oxide 'Big Mac' Sandwich Structure", Infrared Phys. Technol., 71, 127 (2015). https://doi.org/10.1016/j.infrared.2015.03.006
  10. J. G. Kim, D. Y. Kim, H. Kim, B. D. Hahn and Y. R. Cho, "Effect of Interface on Thermal Conductivity of Clad Metal through Thickness Direction for Heat Sink", J. Microelectron. Packag. Soc., 22(3), 67 (2015). https://doi.org/10.6117/kmeps.2015.22.3.067
  11. H. J. Ratzer-Scheibe, U. Schulz and T. Krell, "The Effect of Coating Thickness in the Thermal Conductivity of EB-PVD PYSZ Thermal Barrier Coations", Surf. Coat. Technol., 200, 5636 (2006). https://doi.org/10.1016/j.surfcoat.2005.07.109
  12. C. J. H. Helmereich, R. Corbin and S. M. McDeavitt, "Measurement of Thermal Diffusivity of Depleted Uranium Metal Microspheres", J. Nucl. Mater., 446, 100 (2014). https://doi.org/10.1016/j.jnucmat.2013.10.063
  13. K. Kuniya, H. Arkawa, T. Kanai and A. Chiba, "Thermal Conductivity, Electrical Conductivity and Specific Heat of Copper-Carbon Fiber Composites", Trans. Japan Inst. Metals, 28(10), 819 (1987). https://doi.org/10.2320/matertrans1960.28.819
  14. D. R. Askeland and P. P. Phule, The Science and Engineering of Materials 4th Ed., pp.731-736, Thomson, California (2008).
  15. S. Kume, I. Yamada and K. Watari, "High-Thermal-Conductivity AlN Filler for Polymer/Ceramics Composites", J. Am. Ceram. Soc., 92(s1), S153 (2009). https://doi.org/10.1111/j.1551-2916.2008.02650.x
  16. K. A. Khor, K. H. Cheng and L. G. Yu, F. Boey, "Thermal conductivity and dielectric constant of spark plasma sintered aluminum nitride", Mater. Sci. Eng., A347, 300 (2003).
  17. Z. Gao and L. Zhao, "Effect of Nano-Fillers on the Thermal Conductivity of Epoxy Composites with Micro-$Al_2O_3$ Particles", Mater. Des., 66, 176 (2015). https://doi.org/10.1016/j.matdes.2014.10.052
  18. J. G. Kang, K. S. Hong and H. S. Yang, "Investigation of Film-Thickness Dependent Thermal Conductivity of $Gd_2Zr_2O_7$ Thin Films", Curr. Appl. Phys., 13, 1967 (2013). https://doi.org/10.1016/j.cap.2013.08.011
  19. S. Shin, H. N. Cho, B. S. Kim and H. H. Cho, "Influence of Upper Layer on Measuring Thermal Conductivity of Multilayer Thin Films using Differential 3-$\omega$ Method", Thin Solid Films, 517, 933 (2008). https://doi.org/10.1016/j.tsf.2008.06.090
  20. G. W. Lee, M. Park, J. Kim, J. I. Lee and H. K. Yoon, "Enhanced Thermal Conductivity of Polymer Composites Filled with Hybrid Filler", Composites, A37, 727 (2006).
  21. Y. Xu, D. D. L. Chung and C. Mroz, "Thermally Conducting Aluminum Nitride Polymer-Matrix Composites", Composites, A32, 1749 (2001).

Cited by

  1. 흑연과 탄소나노튜브 함유 아크릴 복합체 박막의 방열 특성 vol.50, pp.3, 2015, https://doi.org/10.5695/jkise.2017.50.3.198