DOI QR코드

DOI QR Code

Quantum chemical and experimental investigations on inhibitory behavior of amino-imino tautomeric equilibrium of 2-aminobenzothiazole on steel corrosion in H2SO4 solution

  • Danaee, I. (Abadan Faculty of Petroleum Engineering, Petroleum University of Technology) ;
  • Gholami, M. (Abadan Faculty of Petroleum Engineering, Petroleum University of Technology) ;
  • RashvandAvei, M. (Department of Chemistry, K.N. Toosi University of Technology) ;
  • Maddahy, M.H. (Abadan Faculty of Petroleum Engineering, Petroleum University of Technology)
  • Received : 2014.04.24
  • Accepted : 2014.11.23
  • Published : 2015.06.25

Abstract

The interaction and corrosion inhibition properties of 2-aminobenzothiazole and its different configurations on steel in $1M\;H_2SO_4$ were studied by electrochemical and computational calculations. A quantum chemical approach was used to calculate electronic properties of 2-ABT and its different configurations to ascertain the relationship between inhibitive effect and molecular structure. The quantitative structure activity relationship approach was also used to correlate the quantum chemical parameters with experimentally determined inhibition efficiencies. Polarization studies showed that 2-ABT blocked the electrode surface by the adsorption of inhibitor molecules obeying Langmuir isotherm. In addition, the activation and thermodynamic parameters of adsorption were calculated.

Keywords

References

  1. M.K. Awad, M.S. Metwally, S.A. Soliman, A.A. El-Zomrawy, M.A. Bedair, J. Ind. Eng. Chem. 20 (2014) 796. https://doi.org/10.1016/j.jiec.2013.06.009
  2. S.M. Shaban, A. Saied, S.M. Tawfik, A. Abd-Elaal, I. Aiad, J. Ind. Eng. Chem. 19 (2013) 2004. https://doi.org/10.1016/j.jiec.2013.03.013
  3. E.M. Sherif, J. Ind. Eng. Chem. 19 (2013) 1884. https://doi.org/10.1016/j.jiec.2013.02.026
  4. N. Dkhireche, A. Dahami, A. Rochdi, J. Hmimou, R. Touir, M. Ebn Touhami, M. El Bakri, A. El Hallaoui, A. Anouar, H. Takenouti, J. Ind. Eng. Chem. 19 (2013) 1996. https://doi.org/10.1016/j.jiec.2013.03.012
  5. B.O. Hasan, S.A. Sadek, J. Ind. Eng. Chem. 20 (2014) 297. https://doi.org/10.1016/j.jiec.2013.03.034
  6. N.A. Odewunmi, S.A. Umoren, Z.M. Gasem, J. Ind. Eng. Chem. (2014), In press doi:10.1016/j.jiec.2014.02.03.
  7. K.R. Ansari, M.A. Quraishi, J. Ind. Eng. Chem. 20 (2014) 2819. https://doi.org/10.1016/j.jiec.2013.11.014
  8. N. Soltani, N. Tavakkoli, M. Khayat Kashani, A. Mosavizadeh, E.E. Oguzie, M.R. Jalali, J. Ind. Eng. Chem. 20 (2014) 3217. https://doi.org/10.1016/j.jiec.2013.12.002
  9. A.Y. Musa, A.B. Mohamad, A.A.H. Kadhum, M.S. Takriff, W. Ahmoda, J. Ind. Eng. Chem. 18 (2012) 551. https://doi.org/10.1016/j.jiec.2011.11.131
  10. S.A. Soliman, M.S. Metwally, S.R. Selim, M.A. Bedair, Mohamed A. Abbas, J. Ind. Eng. Chem. 20 (2014) 4311. https://doi.org/10.1016/j.jiec.2014.01.038
  11. I. Danaee, O. Ghasemi, G.R. Rashed, M. Rashvand Avei, M.H. Maddahy, J. Mol. Struct. 1035 (2013) 247. https://doi.org/10.1016/j.molstruc.2012.11.013
  12. M. Gholami, I. Danaee, M.H. Maddahy, M. RashvandAvei, Ind. Eng. Chem. Res. 52 (2013) 14875. https://doi.org/10.1021/ie402108g
  13. A.R. Hoseinzadeh, I. Danaee, M.H. Maddahy, J. Mater. Sci. Technol. 29 (2013) 884. https://doi.org/10.1016/j.jmst.2013.06.006
  14. M. Mehdipour, B. Ramezanzadeh, S.Y. Arman, Electrochemical noise investigation of Aloe plant extract as green inhibitor on the corrosion of stainless steel in 1 M H2SO4, J. Ind. Eng. Chem. (2014), In press doi:10.1016/j.jiec.2014.02.041.
  15. A.A. Farag, Ali T. Awad, The enhancing of 2-pyrazinecarboxamide inhibition effect on the acid corrosion of carbon steel in presence of iodide ions, J. Ind. Eng. Chem. (2014), In press doi:10.1016/j.jiec.2014.03.030.
  16. V. Arjunan, P.S. Balamourougane, C.V. Mythili, S. Mohan, V. Nandhakumar, J. Mol. Struct. 1006 (2011) 247. https://doi.org/10.1016/j.molstruc.2011.09.015
  17. A. Popova, Corros. Sci. 49 (2007) 2144. https://doi.org/10.1016/j.corsci.2006.10.020
  18. V.I. Minkin, A.D. Garnovskii, J. Elguero, A.R. Katritzky, O.V. Denisko, Adv. Heterocycl. Chem. 76 (2000) 159.
  19. L. Forlani, P. De Maria, J. Chem. Soc. Perkin Trans. 2 (1982) 535.
  20. Y. Zeng, Y. Ren, Inter. J. Quantum Chem. 107 (2007) 247. https://doi.org/10.1002/qua.21059
  21. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Zakrzewski, J.A. Montgomery, J.R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, A.G. Baboul, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komarom, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P.M.W. Gill, B.G. Johnson, W. Chen, M.W. Wong, J.L. Andres, M. Head-Gordon, E.S. Replogle, J.A. Pople, Revision A.7 ed., Gaussian, Inc., Pittsburgh, PA, 1998.
  22. A.D. Becke, Phys. Rev. A: At. Mol. Opt. Phys. 38 (1988) 3098. https://doi.org/10.1103/PhysRevA.38.3098
  23. J.P. Perdew, Y. Wang, Phys. Rev. B: Condens. Matter 45 (1992) 13244. https://doi.org/10.1103/PhysRevB.45.13244
  24. G.L. Gutsev, C.W. Bauschlinder, J. Phys. Chem. A 107 (2003) 7013. https://doi.org/10.1021/jp030288p
  25. R.A. Kendall, T.H. Dunning, R.J. Harrison, J. Chem. Phys. 96 (1992) 6796. https://doi.org/10.1063/1.462569
  26. W.J. Hehre, L. Radom, P.V.R. Schleyer, J.A. Pople, Ab Initio Molecular Orbital Theory, John Wiley & Sons, New York, NY, 1986.
  27. P.V.R. Schleyer, M. Manoharan, Z. Wang, B. Kiran, H. Jiao, R. Puchta, N.J.R.V.E. Hommes, Org. Lett. 3 (2001) 2465. https://doi.org/10.1021/ol016217v
  28. C.C. Zhan, J.A. Nichols, D.A. Dixon, J. Phys. Chem. A 107 (2003) 4184. https://doi.org/10.1021/jp0225774
  29. M.J.S. Dewar, W. Thiel, J. Am. Chem. Soc. 99 (1977) 4899. https://doi.org/10.1021/ja00457a004
  30. R.G. Pearson, Inorg. Chem. 27 (1988) 734. https://doi.org/10.1021/ic00277a030
  31. V.S. Sastri, J.R. Perumareddi, Corrosion 53 (1997) 617. https://doi.org/10.5006/1.3290294
  32. R.G. Parr, L. Sventpaly, S. Liu, J. Am. Chem. Soc. 121 (1999) 1922. https://doi.org/10.1021/ja983494x
  33. B. Gomez, N.V. Likhanova, M.A. Dominguez-Aguilar, O. Olivares, J.M. Hallen, M.R. Martinez-Magadan, J. Phys Chem. A 109 (2005) 8950. https://doi.org/10.1021/jp052188k
  34. P.K. Chattaraj, U. Sarkar, D.R. Roy, Chem. Rev. 106 (2006) 2065. https://doi.org/10.1021/cr040109f
  35. S.B. Liu, Chemical Reactivity Theory: A Density Functional View, Taylor and Francis, Boca Raton, FL, 2009.
  36. J.R. MacDonald, Solid State Ionics 13 (1984) 147. https://doi.org/10.1016/0167-2738(84)90049-3
  37. I. Danaee, J. Electroanal. Chem. 662 (2011) 415. https://doi.org/10.1016/j.jelechem.2011.09.012
  38. B. Gomez, N.V. Likhhanova, M.A. Dominguez-Aguilar, R. Martinez-Palou, A. Vela, J.L. Gazquez, J. Phys. Chem. B 110 (2006) 8928. https://doi.org/10.1021/jp057143y
  39. G. Gece, Corros. Sci. 50 (2008) 2981. https://doi.org/10.1016/j.corsci.2008.08.043
  40. I.B. Obot, N.O. Obi-Egbedi, Colloids Surf., A 330 (2008) 207. https://doi.org/10.1016/j.colsurfa.2008.07.058
  41. D.L. Pain, B.J. Peart, K.R.H. Wooldridge, in: C.W.G.W.H. Cheseman (Ed.), Comprehensive Heterocyclic Chemistry Bird, 6, Pergamon, Oxford, 1984, p. 131 (Chapter 4.17).
  42. D.M. Smith, A. Nicolaides, B.T. Golding, L.R. Radom, J. Am. Chem. Soc. 120 (1998) 10223. https://doi.org/10.1021/ja980635m
  43. J.L. Steinfeld, J.S. Francisco, W.L. Hase, Chemical Kinetics and Dynamics, Prentice Hall, NJ, 1999.
  44. A.E. Litovitz, I. Keresztes, B.K. Carpenter, J. Am. Chem. Soc. 130 (2008) 12085. https://doi.org/10.1021/ja803230a
  45. U. Lourderaj, W.L. Hase, J. Phys. Chem. A 113 (2009) 2236. https://doi.org/10.1021/jp806659f
  46. W.Q. Deng, K.L. Han, J.P. Zhan, G.Z. He, Chem. Phys. Lett. 288 (1988) 33.
  47. P. Atkins, Physical Chemistry, sixth ed., New York, NY, Freeman, 1998.
  48. D. Petrovic, B. Ribar, G. Argay, A. Kalman, W. Novacki, Acta Crystallogr., Sect. B: Struct. Sci. B33 (1977) 106.
  49. M. Annese, A. Bonamartini Corradi, L. Forlani, C. Rizzoli, P. Sgarabotto, J. Chem. Soc. Perkin Trans. 2 (1994) 615.
  50. L. Forlani, J. Heterocycl. Chem. 29 (1992) 1461. https://doi.org/10.1002/jhet.5570290615
  51. G.R. Desiraju, T. Steiner, The Weak Hydrogen Bond in Structural Chemistry and Biology, Oxford University Press Inc., New York, NY, 1999.
  52. J.S. Murray, K. Sen, Molecular Electrostatic Potentials, Concepts and Applications, Elsevier, Amsterdam, 1996.
  53. S.R. Gadre, I.H. Shrivastava, J. Chem. Phys. 94 (1991) 4384. https://doi.org/10.1063/1.460625
  54. J.F. Arenas, J. Perez-Pena, M. Gonzalez-Davila, Collect. Czech. Chem. Commun. 54 (1989) 28. https://doi.org/10.1135/cccc19890028
  55. A.A. Mohamed, A.W. El-Harby, J. Mol Struct. 817 (2007) 125. https://doi.org/10.1016/j.theochem.2007.04.024
  56. I.B. Obot, N.O. Obi-Egbedi, S.A. Umoren, Corros. Sci. 51 (2009) 276. https://doi.org/10.1016/j.corsci.2008.11.013
  57. I. Ahamad, R. Prasad, M.A. Quraishi, Mater. Chem. Phys. 124 (2010) 1155. https://doi.org/10.1016/j.matchemphys.2010.08.051
  58. T. Arslan, F. Kandemirli, E.E. Ebenso, I. Love, H. Alemu, Corros. Sci. 51 (2009) 35. https://doi.org/10.1016/j.corsci.2008.10.016
  59. H. Cheng, D.B. Reiser, S.W. Dean, K. Baumert Jr., J. Phys. Chem. B 105 (2001) 12547. https://doi.org/10.1021/jp0155112
  60. D. Curulla-Ferre, A. Govender, T.C. Bromfield, J.W. Niemantsverdriet, J. Phys. Chem. B 110 (2006) 13897. https://doi.org/10.1021/jp055979v
  61. A. Martinez, A. Goursot, B. Coq, G. Delahay, J. Phys. Chem. B 108 (2004) 8823. https://doi.org/10.1021/jp0313167
  62. A. Bilic, J.R. Reimers, N.S. Hush, J. Phys. Chem. B 106 (2002) 6740. https://doi.org/10.1021/jp020590i
  63. M.S. Masoud, M.K. Awad, M.A. Shaker, M.M.T. El-Tahawy, Corros. Sci. 52 (2010) 2387. https://doi.org/10.1016/j.corsci.2010.04.011
  64. Y. Feng, S. Chen, H. Zhang, P. Li, L. Wu, W. Guo, Appl. Surf. Sci. 253 (2006) 2812. https://doi.org/10.1016/j.apsusc.2006.05.061
  65. J.L. Gasquez, A. Cedillo, A. Vela, J. Phys. Chem. A 111 (2007) 1966. https://doi.org/10.1021/jp065459f
  66. E.E. Ebenso, T. Arslan, F. Kandemirli, N. Caner, I. Love, Int. J. Quantum Chem. 110 (2010) 1003.
  67. I. Lukovits, E. Kalman, F. Zucchi, Corrosion 57 (2001) 3. https://doi.org/10.5006/1.3290328
  68. N.O. Obi-Egbedi, I.B. Obot, Corros. Sci. 52 (2010) 657. https://doi.org/10.1016/j.corsci.2009.10.017
  69. W. Yang, W.J. Moritier, J. Am. Chem. Soc. 108 (1986) 5708. https://doi.org/10.1021/ja00279a008
  70. S. Xia, M. Qiu, L. Yu, F. Liu, H. Zhao, Corros. Sci. 50 (2008) 2021. https://doi.org/10.1016/j.corsci.2008.04.021
  71. H. Tanak, M. Yavuz, J. Mol. Model. 16 (2010) 235. https://doi.org/10.1007/s00894-009-0539-5
  72. N.O. Eddy, S.R. Stoyanov, E.E. Ebenso, Int. J. Electrochem. Sci. 5 (2010) 1127.
  73. L.C. Murulana, A.K. Singh, S.K. Shukla, M.M. Kabanda, E.E. Ebenso, Ind. Eng. Chem. Res. 51 (2012) 13282. https://doi.org/10.1021/ie300977d
  74. A. Doner, R. Solmaz, M. Ozcan, G. Kardas, Corros. Sci. 53 (2011) 2902. https://doi.org/10.1016/j.corsci.2011.05.027
  75. O. Ghasemi, I. Danaee, G.R. Rashed, M. RashvandAvei, M.H. Maddahy, J. Mater. Eng. Perform. 20 (2013) 301.
  76. N. Labjar, M. Lebrini, F. Bentiss, N.E. Chihib, S. El Hajjaji, C. Jama, Mater. Chem. Phys. 119 (2010) 330. https://doi.org/10.1016/j.matchemphys.2009.09.006
  77. I. Danaee, S. Noori, Int. J. Hydrogen Energy 36 (2011) 12102. https://doi.org/10.1016/j.ijhydene.2011.06.106
  78. A.R. Hoseinzadeh, I. Danaee, M.H. Maddahy, Z. Phys. Chem. 227 (2013) 403. https://doi.org/10.1524/zpch.2013.0276
  79. R. Solmaz, G. Kardas, M.C. Culha, B. Yazici, M. Erbil, Electrochim. Acta 53 (2008) 5941. https://doi.org/10.1016/j.electacta.2008.03.055
  80. H. Jafari, I. Danaee, H. Eskandari, M. RashvandAvei, Ind. Eng. Chem. Res. 52 (2013) 6617. https://doi.org/10.1021/ie400066x
  81. M.M. Solomon, S.A. Umoren, I.I. Udosoro, A.P. Udoh, Corros. Sci. 52 (2010) 1317. https://doi.org/10.1016/j.corsci.2009.11.041
  82. H. Jafari, I. Danaee, H. Eskandari, M. Mehdi RashvandAvei, J. Mater. Sci. Technol. 30 (2014) 239. https://doi.org/10.1016/j.jmst.2014.01.003
  83. G.E. Badr, Corros. Sci. 51 (2009) 2529. https://doi.org/10.1016/j.corsci.2009.06.017
  84. I. Ahamad, R. Prasad, M.A. Quraishi, Corros. Sci. 52 (2010) 933. https://doi.org/10.1016/j.corsci.2009.11.016
  85. B. Dogru Mert, M. Erman Mert, G. Kardas, B. Yazici, Corros. Sci. 53 (2011) 4265. https://doi.org/10.1016/j.corsci.2011.08.038
  86. W.H. Li, Q. He, S.T. Zhang, C.L. Pei, B.R. Hou, J. Appl. Electrochem. 38 (2008) 289. https://doi.org/10.1007/s10800-007-9437-7
  87. H. Li, D. Dzombak, R. Vidic, Ind. Eng. Chem. Res. 51 (2012) 2821. https://doi.org/10.1021/ie201802n
  88. S. Deng, X. Li, H. Fu, Corros. Sci. 53 (2011) 822. https://doi.org/10.1016/j.corsci.2010.11.019
  89. H. Keles, Mater. Chem. Phys. 130 (2011) 1317. https://doi.org/10.1016/j.matchemphys.2011.09.022
  90. I. Lukovits, I. Bako, A. Shaban, E. Kalman, Electrochim. Acta 43 (1998) 131. https://doi.org/10.1016/S0013-4686(97)00241-7
  91. I. Lukovits, A. Shaban, E.C. Kalman, Russ. J. Electrochem. 39 (2003) 177. https://doi.org/10.1023/A:1022313126231
  92. K.F. Khaled, Appl. Surf. Sci. 252 (2006) 4120. https://doi.org/10.1016/j.apsusc.2005.06.016

Cited by

  1. Impedance Spectroscopy Studies on Corrosion Inhibition Behavior of Synthesized N,N’-bis(2,4-dihydroxyhydroxybenzaldehyde)-1,3-Propandiimine for API-5L-X65 Steel in HCl Solution vol.7, pp.2, 2015, https://doi.org/10.5229/jecst.2016.7.2.153
  2. Raman and infrared spectra, normal coordinate analysis and ab initio calculations of 4-Amino-2-chloropyrimidine-5-carbonitrile vol.1115, pp.None, 2016, https://doi.org/10.1016/j.molstruc.2016.02.082
  3. Adsorption Effect of Five-Membered and Six-Membered Alicyclic Amine-Derived Mannich Bases on Mild Steel Surface in 1.0 M HCl vol.2, pp.35, 2017, https://doi.org/10.1002/slct.201701991
  4. Preparation and Anti-Corrosive Properties of Cerium Oxide Conversion Coatings on Steel X52 vol.20, pp.2, 2017, https://doi.org/10.1590/1980-5373-mr-2016-0661
  5. Investigation on Trend Removal in Time Domain Analysis of Electrochemical Noise Data Using Polynomial Fitting and Moving Average Removal Methods vol.8, pp.2, 2015, https://doi.org/10.5229/jecst.2017.8.2.115
  6. Protection Effect of 2-(phenylthio)phenyl)-1-(2- (trifluoromethyl)phenyl) methanimine on Low Carbon Steel at Open Circuit and Different Potentials vol.54, pp.3, 2015, https://doi.org/10.1134/s2070205118030292
  7. Barley Agro-industrial Residues as Corrosion Inhibitor for Mild Steel in 1mol L-1HCl Solution vol.22, pp.2, 2015, https://doi.org/10.1590/1980-5373-mr-2018-0511
  8. Corrosion Inhibition and Adsorption Mechanism of Eugenol on Copper in HCl Medium vol.55, pp.1, 2015, https://doi.org/10.1134/s2070205119010192
  9. Density Functional Theory and Electrochemical Noise Analysis of Corrosion Inhibition Behavior of N,N '-bis(1-(3,5-dihydroxyphenyl)ethylidene)propane-1,3-diamine on Steel in HCl Solution vol.55, pp.5, 2015, https://doi.org/10.1134/s2070205119050289
  10. Computational and Experimental Study onthe Adsorption and Inhibition Effects of 1,3-Benzothiazol-6-ol on the Corrosion ofSteel X80 in Acidic Solution vol.235, pp.5, 2015, https://doi.org/10.1515/zpch-2019-1383
  11. DFT and Electrochemical Investigations on the Corrosion Inhibition of Mild Steel by Novel Schiff’s Base Derivatives in 1 M HCl Solution vol.46, pp.6, 2015, https://doi.org/10.1007/s13369-020-05229-4
  12. Adsorption mechanism of 3-(1,4-disubstituted-1,2,3-triazolyl) uridine nucleosides against the corrosion of mild steel in HCl vol.268, pp.None, 2015, https://doi.org/10.1016/j.matchemphys.2021.124742
  13. Anticorrosive ability of cycloheximide on mild steel corrosion in 0.5M H2SO4 Solution. vol.37, pp.None, 2015, https://doi.org/10.1016/j.cdc.2021.100795