DOI QR코드

DOI QR Code

Enhanced photocatalytic activity of TiO2 by reduced graphene oxide in mineralization of Rhodamine B dye

  • Maruthamani, D. (Clean Fuels and Catalysis Research Center, Department of Chemistry, PSG College of Technology) ;
  • Divakar, D. (Clean Fuels and Catalysis Research Center, Department of Chemistry, PSG College of Technology) ;
  • Kumaravel, M. (Clean Fuels and Catalysis Research Center, Department of Chemistry, PSG College of Technology)
  • Received : 2014.12.22
  • Accepted : 2015.04.20
  • Published : 2015.10.25

Abstract

A series of reduced graphene oxide (RGO)-$TiO_2$ nanocomposites with varying weight percentage of RGO were prepared by solvothermal method. The as-prepared samples were characterized by FT-IR, XRD, TEM, UV-Visible DRS, PL, EIS and Raman analysis. The photocatalytic activity was evaluated toward the decolourization/degradation of Rhodamine B dye (RhB) under UV light. The effects of various parameters such as RGO content, initial dye concentration, pH and catalytic dose on decolourization were studied and optimized. The results were also compared with bare $TiO_2$. At optimized conditions the influence of various dye bath additives on decolourization has been examined and discussed in detail. It was found that the RGO-$TiO_2$ composites (RGOT) had a better photocatalytic activity than $TiO_2$. The enhanced activity is due to the presence of bi-dimensional RGO network in the composite photocatalysts which suppresses the recombination of photo-induced charge carriers. Reusability test results revealed that the catalyst is photostable, easily separable and reusable. The degradation kinetics obeys Langmuir-Hinshelwood model.

Keywords

References

  1. W. Wang, J. Yu, Q. Xiang, B. Cheng, Appl. Catal. B: Environ. 119-120 (2012) 109. https://doi.org/10.1016/j.apcatb.2012.02.035
  2. I. Nitoi, P. Oancea, M. Raileanu, M. Crisan, L. Constantin, I. Cristea, J. Ind. Eng. Chem. 21 (2015) 677. https://doi.org/10.1016/j.jiec.2014.03.036
  3. Q. Xiang, J. Yu, P.K. Wong, J. Colloid Interface Sci. 357 (2011) 163. https://doi.org/10.1016/j.jcis.2011.01.093
  4. Y. Zhang, Z. Zhou, T. Chen, H. Wang, W. Lu, J. Environ. Sci. 26 (2014) 2114. https://doi.org/10.1016/j.jes.2014.08.011
  5. S.-Y. Lee, S.-J. Park, J. Ind. Eng. Chem. 19 (2013) 1761. https://doi.org/10.1016/j.jiec.2013.07.012
  6. A. Galinska, J. Walendziewski, Energy Fuels 19 (2005) 1143. https://doi.org/10.1021/ef0400619
  7. Md. Amir, U. Kurtan, A. Baykal, J. Ind. Eng. Chem. (2015), http://dx.doi.org/ 10.1016/j.jiec.2015.01.013.
  8. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293 (2001) 269. https://doi.org/10.1126/science.1061051
  9. Z.L. Jin, X.J. Zhang, Y.X. Li, S.B. Li, G.X. Lu, Catal. Commun. 8 (2007) 1267. https://doi.org/10.1016/j.catcom.2006.11.019
  10. Q. Xiang, J. Yu, M. Jaroniec, Nanoscale 3 (2011) 3670. https://doi.org/10.1039/c1nr10610d
  11. Y.Q. Sun, Q.O. Wu, G.Q. Shi, Energy Environ. Sci. 4 (2011) 1113. https://doi.org/10.1039/c0ee00683a
  12. S. Li, X. Pan, L.K. Wallis, Z. Fan, Z. Chen, S.A. Diamond, Chemosphere 112 (2014) 62. https://doi.org/10.1016/j.chemosphere.2014.03.058
  13. M.J. Allen, V.C. Tung, R.B. Kaner, Chem. Rev. 110 (2010) 132. https://doi.org/10.1021/cr900070d
  14. Y. Cong, M. Long, Z. Cui, X. Li, Z. Dong, G. Yuan, J. Zhang, Appl. Surf. Sci. 282 (2013) 400. https://doi.org/10.1016/j.apsusc.2013.05.143
  15. D.H. Wang, D.W. Choi, J. Li, Z.G. Yang, Z.M. Nie, R.D. Kou, H. Hu, C.M. Wang, L.V. Saraf, J.G. Zhang, I.A. Aksay, J. Liu, ACS Nano 3 (2009) 907. https://doi.org/10.1021/nn900150y
  16. A.N. Cao, Z.S. Liu, S. Chu, M.H. Wu, Z.M. Ye, Z.W. Cai, Y.L. Chang, S.F. Wang, Q.H. Gong, Y.F. Liu, Adv. Mater. 22 (2010) 103. https://doi.org/10.1002/adma.200901920
  17. Y.H. Ng, A. Iwase, A. Kudo, R. Amal, J. Phys. Chem. Lett. 1 (2010) 2607. https://doi.org/10.1021/jz100978u
  18. Q. Xiang, J. Yu, M. Jaroniec, J. Phys. Chem. C 115 (2011) 7355. https://doi.org/10.1021/jp200953k
  19. Q. Xiang, J. Yu, M. Jaroniec, Chem. Soc. Rev. 41 (2012) 782. https://doi.org/10.1039/C1CS15172J
  20. C. Hu, F. Chen, T. Lu, C. Lian, S. Zheng, Q. Hu, S. Duo, R. Zhang, Appl. Surf. Sci. 317 (2014) 648. https://doi.org/10.1016/j.apsusc.2014.08.161
  21. Y. Gu, M. Xing, J. Zhang, Appl. Surf. Sci. 319 (2014) 8. https://doi.org/10.1016/j.apsusc.2014.04.182
  22. S. Pei, H.M. Cheng, Carbon 50 (2012) 3210. https://doi.org/10.1016/j.carbon.2011.11.010
  23. F. Wang, K. Zhang, J. Mol. Catal. A: Chem. 345 (2011) 101. https://doi.org/10.1016/j.molcata.2011.05.026
  24. P. Wang, Y. Ao, C. Wang, J. Hou, J. Qian, J. Hazard. Mater. 79 (2012) 223.
  25. N.P. Wickramaratne, M. Jaroniec, J. Colloid Interface Sci. 449 (2015) 297. https://doi.org/10.1016/j.jcis.2015.01.018
  26. M.Q. Yang, N. Zhang, Y.J. Xu, Appl. Mater. Int. 5 (3) (2013) 1156. https://doi.org/10.1021/am3029798
  27. W. Fan, Q. Lai, Q. Zhang, Y. Wang, J. Phys. Chem. C 115 (2011) 10694. https://doi.org/10.1021/jp2008804
  28. Y.X. Zhang, H.Y. Wu, J. Zhang, H.T. Wang, W.J. Lu, J. Hazard. Mater. 221-222 (2012) 92. https://doi.org/10.1016/j.jhazmat.2012.04.005
  29. K. Kryshnamoorthy, M. Veerapandian, K. Yun, S.-J. Kim, Carbon 53 (2013) 38. https://doi.org/10.1016/j.carbon.2012.10.013
  30. T.D. Nguyen-Phan, V.H. Pham, E.W. Shin, H.D. Pham, S. Kim, J.S. Chung, Chem. Eng. J. 170 (1) (2011) 226. https://doi.org/10.1016/j.cej.2011.03.060
  31. Y.P. Zhang, C.X. Pan, J. Mater. Sci. 46 (8) (2011) 2622. https://doi.org/10.1007/s10853-010-5116-x
  32. Z. Han, L. Wei, H. Pan, C. Li, J. Chen, J. Mol. Catal. A: Chem. 398 (2015) 399. https://doi.org/10.1016/j.molcata.2015.01.006
  33. M. Xing, F. Shen, B. Qiu, J. Zhang, Sci. Rep. 4 (2014) 6341, http://dx.doi.org/ 10.1038/srep06341.
  34. K.X. Li, J.J. Xiong, T. Chen, L.S. Yan, Y.H. Dai, D.Y. Song, J. Hazard. Mater. 250-251 (2013) 19. https://doi.org/10.1016/j.jhazmat.2013.01.069
  35. M.Q. Yang, N. Zhang, Y.J. Xu, ACS Appl. Mater. Int. 5 (3) (2013) 1156. https://doi.org/10.1021/am3029798
  36. A. Hirsch, Angew. Chem. Int. Ed. 48 (2009) 6594. https://doi.org/10.1002/anie.200902534
  37. J. Molina, J. Fernandez, J.C. Ines, A.I. Del Rio, J. Bonastre, F. Cases, Electrochim. Acta 93 (2013) 44. https://doi.org/10.1016/j.electacta.2013.01.071
  38. P. Muthirulan, C. Nirmala Devi, M. Meenakshi Sundaram, Ceram. Int. 40 (2014) 5945. https://doi.org/10.1016/j.ceramint.2013.11.042
  39. G.S.H. Thien, F.S. Omar, N.I.S.A. Blya, W.S. Chiu, H.N. Lim, R. Yousefi, F.J. Sheini, N.M. Huang, Int. J. Photoenergy (2014), http://dx.doi.org/10.1155/2014/650583, Article ID 650583.
  40. S.K. Choi, S. Kim, S.K. Lim, H. Park, J. Phys. Chem. C 114 (39) (2010) 16475. https://doi.org/10.1021/jp104317x
  41. H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, ACS Nano 4 (2010) 380. https://doi.org/10.1021/nn901221k
  42. N.R. Khalid, E. Ahmed, Z. Hong, Y. Zhang, M. Ullah, M. Ahmed, Ceram. Int. 39 (2013) 3569. https://doi.org/10.1016/j.ceramint.2012.10.183
  43. H. Liu, X. Dong, C. Duan, X. Su, Z. Zhu, Ceram. Int. 39 (2013) 8789. https://doi.org/10.1016/j.ceramint.2013.04.066
  44. A. Akyol, H.C. Yatmaz, M. Bayramoglu, Appl. Catal. B: Environ. 54 (2004) 19. https://doi.org/10.1016/j.apcatb.2004.05.021
  45. B. Gao, Y. Ma, Y. Cao, W. Yang, J. Yao, J. Phys. Chem. B 110 (2006) 14391. https://doi.org/10.1021/jp0624606
  46. D. Zhao, G. Sheng, C. Chen, X. Wang, Appl. Catal. B: Environ. 111 (2012) 303.
  47. W.S. Wang, D.H. Wang, W.G. Qu, L.Q. Lu, A.W. Xu, J. Phys. Chem. C 116 (2012) 19893. https://doi.org/10.1021/jp306498b
  48. Y. Wang, Water Res. 34 (2000) 990. https://doi.org/10.1016/S0043-1354(99)00210-9
  49. M. Safari, M. Nikazar, M. Dadvar, J. Ind. Eng. Chem. 19 (2013) 1697. https://doi.org/10.1016/j.jiec.2013.02.008
  50. F. Chen, J. Zhao, H. Hidaka, Int. J. Photoenergy 5 (2003) 209. https://doi.org/10.1155/S1110662X03000345
  51. S.H. Hsieh, W.J. Chen, C.T. Wu, Appl. Surf. Sci. 340 (2015) 9. https://doi.org/10.1016/j.apsusc.2015.02.184
  52. C.C. Wong, W. Chu, Chemosphere 50 (2003) 981. https://doi.org/10.1016/S0045-6535(02)00640-9
  53. M. Muruganandham, N. Shobana, M. Swaminathan, J. Mol. Catal. A: Chem. 246 (2006) 154. https://doi.org/10.1016/j.molcata.2005.09.052
  54. K. Okamoto, Y. Yamamoto, H. Tanaka, A. Itaya, Bull. Chem. Soc. Jpn. 58 (1985) 2015. https://doi.org/10.1246/bcsj.58.2015
  55. A.V. Rupa, D. Manikandan, D. Divakar, S. Revathi, M. Esther Leena Preethi, K. Shanthi, T. Sivakumar, Indian J. Chem. Technol. 14 (2007) 71.
  56. A.V. Rupa, D. Manikandan, D. Divakar, T. Sivakumar, J. Hazard. Mater. 147 (2007) 906. https://doi.org/10.1016/j.jhazmat.2007.01.107
  57. L. Wenhua, L. Hong, C. Saoan, Z. Jianqing, C. Chunan, J. Photochem. Photobiol. A: Chem. 131 (2000) 125. https://doi.org/10.1016/S1010-6030(99)00232-4
  58. N. Daneshvar, D. Salari, A.R. Khataee, J. Photochem. Photobiol. A 157 (2003) 111. https://doi.org/10.1016/S1010-6030(03)00015-7

Cited by

  1. Synergetic adsorption and photocatalytic degradation of pollutants over 3D TiO2-graphene aerogel composites synthesized via a facile one-pot route vol.15, pp.8, 2016, https://doi.org/10.1039/c6pp00133e
  2. Preparation and Photocatalytic Performance of RGO/TiO2 Photocatalyst vol.728, pp.None, 2015, https://doi.org/10.4028/www.scientific.net/kem.728.359
  3. Synthesis and properties of B-Ni-TiO2/g-C3N4 photocatalyst for degradation of chloramphenicol (CAP) under visible light irradiation vol.29, pp.16, 2015, https://doi.org/10.1007/s10854-018-9529-7
  4. Facile Solvothermal Synthesis of Novel CuCo2S4/g-C3N4 Nanocomposites for Visible-Light Photocatalytic Applications vol.28, pp.3, 2015, https://doi.org/10.1007/s10904-018-0828-5
  5. String and Ball-Like TiO2/rGO Composites with High Photo-catalysis Degradation Capability for Methylene Blue vol.24, pp.3, 2015, https://doi.org/10.1007/s12209-018-0119-9
  6. Synthesis of a new magnetic nano-island titania photocatalyst and investigation of its photocatalytic activity vol.15, pp.3, 2015, https://doi.org/10.1007/s13738-017-1252-4
  7. E‐Waste Based V2O5/RGO/Pt Nanocomposite for Photocatalytic Degradation of Oxytetracycline vol.38, pp.4, 2015, https://doi.org/10.1002/ep.13123
  8. Flame spray pyrolysis synthesized gold-loaded titanium dioxide photocatalyst for degradation of Rhodamine B vol.55, pp.3, 2015, https://doi.org/10.1007/s41779-018-0283-3
  9. Titanium nitride nanoparticles for the efficient photocatalysis of bicarbonate into formate vol.200, pp.None, 2015, https://doi.org/10.1016/j.solmat.2019.109967
  10. V2O5/RGO/Pt nanocomposite on oxytetracycline degradation and pharmaceutical effluent detoxification vol.95, pp.1, 2015, https://doi.org/10.1002/jctb.6238
  11. Controllable synthesis of peapod-like TiO2@GO@C electrospun nanofiber membranes with enhanced mechanical properties and photocatalytic degradation abilities towards methylene blue vol.44, pp.9, 2020, https://doi.org/10.1039/c9nj06249a
  12. Enhanced visible-light utilization with ZnCo2O4-BiErWO6 heterojunctions towards photocatalytic degradation of antibiotics vol.31, pp.20, 2015, https://doi.org/10.1007/s10854-020-04373-9
  13. Enhanced visible light photocatalysis with E‐waste‐based V2O5/zinc–ferrite: BTEX degradation and mechanism vol.95, pp.11, 2015, https://doi.org/10.1002/jctb.6442
  14. An Overview on Graphene-Metal Oxide Semiconductor Nanocomposite: A Promising Platform for Visible Light Photocatalytic Activity for the Treatment of Various Pollutants in Aqueous Medium vol.25, pp.22, 2015, https://doi.org/10.3390/molecules25225380
  15. Recent advances in graphene oxide and reduced graphene oxide based nanocomposites for the photodegradation of dyes vol.8, pp.45, 2015, https://doi.org/10.1039/d0tc03684f
  16. One-pot in situ synthesis of eco-friendly cellulose magnetic nanocomposite (Cf-MNCs) for dye adsorption application vol.3, pp.1, 2021, https://doi.org/10.1088/2631-6331/abcfaf
  17. Enhanced Photocatalytic Activity of Hybrid rGO@TiO2/CN Nanocomposite for Organic Pollutant Degradation under Solar Light Irradiation vol.11, pp.9, 2015, https://doi.org/10.3390/catal11091023
  18. Photocatalytic activity of dye‐sensitized and non‐sensitized GO‐TiO 2 nanocomposites under simulated and direct sunlight vol.19, pp.1, 2015, https://doi.org/10.1111/ijac.13937