DOI QR코드

DOI QR Code

Thermal Properties of Two-Layered Materials Composed of Dielectric Layer on Metallic Substrate along the Thickness Direction

금속기판에 유전체 후막을 형성시켜 제조한 2층 층상재료에서 두께 방향의 열전도 특성

  • Kim, Jong-Gu (Division of Materials Science and Engineering, Pusan National University) ;
  • Jeong, Ju-Young (Division of Materials Science and Engineering, Pusan National University) ;
  • Ju, Jae-Hoon (Department of Advanced Materials and Parts of Transportation Systems, Pusan National University) ;
  • Park, Sang-Hee (Department of Ophthalmic Optics, Kaya University) ;
  • Cho, Young-Rae (Division of Materials Science and Engineering, Pusan National University)
  • 김종구 (부산대학교 재료공학부) ;
  • 정주영 (부산대학교 재료공학부) ;
  • 주재훈 (부산대학교 수송기기하이테크소재부품전공) ;
  • 박상희 (가야대학교 안경광학과) ;
  • 조영래 (부산대학교 재료공학부)
  • Received : 2016.12.09
  • Accepted : 2016.12.23
  • Published : 2016.12.31

Abstract

The importance of heat dissipation for the electric device modules along the thickness direction is increasing. Two types of two-layered materials, metal-metal bonding and dielectric-metal bonding, have been fabricated by roll bonding process and a thermal diffusivity of the specimens was measured along the thickness direction. The thermal diffusivity of specimens with metal-metal bonding measured by light flash analysis (LFA) showed a same value independent on the direction of heat flow. However, the thermal diffusivity of specimens with dielectric-metal bonding showed a big difference of 17.5% when the direction of heat flow changed oppositely in the LFA process. The measured thermal diffusivity of specimens when the heat flows from metal to dielectric direction showed smaller value of 17.5% compared to the value when the heat flow from dielectric to metal direction. The difference in thermal diffusivity of specimens with dielectric-metal bonding dependence on direction of heat flow is due to the electron-phonon resistance that occurred transfer process of electron energy to phonon energy near the interface.

전자소자의 방열모듈에서 두께 방향의 열방출 특성에 대한 중요성이 증가하고 있다. 금속과 금속의 본딩 및 유전체와 금속의 본딩 구조를 갖는 2가지 종류의 2층 층상재료를 제조한 후 두께 방향으로 열확산계수를 측정하였다. 금속(STS439)과 금속(Al6061)으로 이루어진 2층 층상재료에서는 섬광법(LFA)으로 열확산계수를 측정했을 때, 열흐름의 방향을 반대로 변화시켜도 열확산계수의 변화가 없었다. 그런데, 유전체(AlN-Polymer)와 금속(Al6061)의 2층 층상재료에서는 열흐름의 방향을 반대로 인가하였을 때 열확산계수는 17.5% 정도 다르게 나타났다. 유전체와 금속의 단면구조를 갖는 2층 층상재료에서, 금속에서 유전체 방향으로 측정한 열확산계수가 유전체에서 금속 방향으로 측정한 열확산계수에 비해 17.5% 작게 나타난 이유는, 금속내의 전자가 갖고 있던 에너지가 유전체 쪽으로 전달되기 위해서는 계면 주변에서 포논의 에너지 형태로 변환될 때 저항이 생기기 때문이다.

Keywords

References

  1. V. N. Popok, K. B. Pedersen, P. K. Kristensen and K. Pedersen, "Comprehensive Physical Analysis of Bond Wire Interfaces in Power Modules", Microelectron. Reliab., 58, 58 (2016). https://doi.org/10.1016/j.microrel.2015.11.025
  2. Y. J. Heo, H. T. Kim, K. J. Kim, S. Nahm, Y. J. Yoon and J. Kim, "Enhanced Heat Transfer by Room Temperature Deposition of AlN Film on Aluminum for a Light Emitting Diode Package", Appl. Therm. Eng., 50, 799 (2013). https://doi.org/10.1016/j.applthermaleng.2012.07.024
  3. I. G. Kim, M. E. Son and Y. S. Kim, "Fabrication of the Cu-STS-Cu Clad Metal for High Strength Electric Device Lead Frame and Thermal Stability on Their Physical Properties", Journal of KWJS., 32(5), 80 (2014).
  4. G. W. Lee, M. Park, J. Kim, J. I. Lee and H. G. Yoon, "Enhanced Thermal Conductivity of Polymer Composites Filled with Hybrid Filler", Compos. Part A, 727 (2006).
  5. S. M. Na, S. I. Go and S. J. Lee, "Observation of Thermal Conductivity of Pressureless Sintered AlN Ceramics under Control of $Y_2O_2$ Content and Sintering Condition", J. Kor. Ceram. Soc., 48(5), 368 (2011). https://doi.org/10.4191/kcers.2011.48.5.368
  6. Y. W. Kim, H. C. Park and K. D. Oh, "Effect of AlN Addition on the Thermal Conductivity of Sintered $Al_2O_3$", J. Kor. Ceram. Soc., 33(3), 285 (1996).
  7. G. Kim, K. M. Jung, J. T. Moon and J. H. Lee, "Electrical Resistivity and Thermal Conductivity of Paste Containing Ag-Coated Cu Flake Filler", J. Microelectron. Packag. Soc., 21(4), 51 (2014).
  8. J. W. Roh, S. Y. Jang, J. Kang, S. Lee, J. S. Noh, J. Park and W. Lee, "Thermal Conductivity in Individual Single-Crystalline PbTe Nanowires", Kor. J. Met. Mater., 48(2), 175 (2010). https://doi.org/10.3365/KJMM.2010.48.02.175
  9. P. E. Hopkins, M. Ding and J. Poon, "Contributions of Electron and Phonon Transport to the Thermal Conductivity of GdFeCo and TbFeCo Amorphous Rare-Earth Transition-Metal Alloys", J. Appl. Phys., 103533 (2012).
  10. J. G. Kim, H. S. Park, H. Kim and Y. R. Cho, "Evaluation of Thermal Conductivity for Screen-Printed AlN Layer on Al Substrate in Thickness Direction", J. Microelectron. Packag. Soc., 22(4), 66 (2015).
  11. H. J. Ratzer-Scheibe, U. Schulz and T. Krell, "The Effect of Coating Thickness in the Thermal Conductivity of EB-PVD PYSZ Thermal Barrier Coations", Surf. Coat. Technol., 200, 5636 (2006). https://doi.org/10.1016/j.surfcoat.2005.07.109
  12. D. Hautcoeur, Y. Lorgouilloux, A. Leriche, M. Gonon, B. Nait-Ali, D. S. Smith, V. Lardot and F. Cambier, "Thermal Conductivity of Ceramic/Metal Composites from Preforms Produced by Freeze Casting", Ceram. Int., 42, 47077 (2016).
  13. M. V. Krishnaiah, G. Seenivasan, P. S. Murti and C. K. Mathews, "Thermal Conductivity of Selected Cermet Materials", J. Alloys Comp., 353, 315 (2003). https://doi.org/10.1016/S0925-8388(02)01326-9
  14. C. L. Choy, K. W. Tong, H. K. Wong and W. P. Leung, "Thermal Conductivity of Amorphous Alloys above Room Temperature", J. Appl. Phys., 70, 4919 (1991). https://doi.org/10.1063/1.349037
  15. A. Majumdar and P. Reddy, "Role of Electron-Phonon Coupling in Thermal Conductance of Metal-Nonmetal Interfaces", Appl. Phys. Lett., 84, 4768 (2004). https://doi.org/10.1063/1.1758301

Cited by

  1. 고출력 전자 패키지 기판용 고열전도 h-BN/PVA 복합필름 vol.25, pp.4, 2016, https://doi.org/10.6117/kmeps.2018.25.4.095