DOI QR코드

DOI QR Code

Comparison of Methane Production of Holstein Steers Fed Forage and Concentrates Separately or As a TMR

TMR과 조사료 농후사료 분리급여 방식의 홀스타인 거세우 메탄배출량 비교

  • Lee, Yoonseok (Institute of Green Bioscience and Technology, SNU) ;
  • Bharanidharana, Rajaraman (Graduate School of International Agricultural Technology, SNU) ;
  • Park, Jae-Hyun (Institute of Livestock Environmental Magement) ;
  • Jang, Sun Sik (Hanwoo Research Institute, National Institute of Animal Science) ;
  • Yeo, Joon Mo (Dept. of Beef & Dairy Science, Korea National College of Agriculture & Fisheries) ;
  • Kim, Wan Young (Dept. of Beef & Dairy Science, Korea National College of Agriculture & Fisheries) ;
  • Kim, Kyoung Hoon (Institute of Green Bioscience and Technology, SNU)
  • 이윤석 (서울대학교 그린바이오과학기술연구원) ;
  • ;
  • 박재현 (축산환경관리원) ;
  • 장선식 (국립축산과학원 한우연구소) ;
  • 여준모 (국립한국농수산대학 대가축학과) ;
  • 김완영 (국립한국농수산대학 대가축학과) ;
  • 김경훈 (서울대학교 그린바이오과학기술연구원)
  • Received : 2016.04.14
  • Accepted : 2016.04.29
  • Published : 2016.06.30

Abstract

The objective of this study was to determine how feeding forage and concentrate separately (SF) or as a total mixed ration (TMR) affects enteric methane production of cattle. Six Holstein steers ($203{\pm}22.5kg$) were used in a $2{\times}3$ changeover design experiment. Experimental diets (TMR and SF) consisted of compound feed, timothy hay and soybean curd residue in a ratio of 40:48:12, respectively, and diets were fed at 10% of metabolic body weight, on an as-fed basis. There were no differences in dry matter intake and enteric methane production (g/d) between SF and TMR but the methane conversion rate (methane energy/GE intake) of TMR was significantly higher (p=0.05) than that of SF. The mean methane emission factor (kg/head/year) and conversion rate of the two treatments were 21.4 and 0.05, respectively. There was a strong relationship between metabolic body weight and enteric methane production (p<0.001). At the present time, further studies may be necessary in order to establish the effects of TMR and SF on enteric methane production.

본 실험은 동일 사료원료 조건에서 농후사료와 조사료를 혼합 급여하는 섬유질배합사료(TMR)와 분리급여 방식이 메탄발생량에 미치는 효과를 조사하기 위하여 홀스타인 거세 숫소 6두(평균체중 $203{\pm}24.8kg$)를 공시하여 changeover design으로 실험을 수행하였다. TMR구는 육성기용 배합사료, 티모시 건초 그리고 비지를 생중량 기준 각각 40, 48, 12% 비율로 매일 혼합 급여하였고, 분리급여구는 배합사료와 비지만을 급여 전 혼합하여 대사틀에 설치된 사료통에 먼저 넣고 그 위에 티모시를 올려주었다. 사료급여량은 공시축이 전량 섭취할 수 있도록 약 0.2 kg의 일당증체 수준으로 제한 급여하였기 때문에 처리구간 차이가 없었고, 메탄발생량(g/d)에서도 유의적인 차이가 없었다(P>0.1). 그러나 메탄 전변율(Ym, 메탄 에너지/GE intake)은 TMR구가 분리급여구 보다 유의적으로 높았다(p=0.05). 두 처리 평균 메탄 배출계수(kg $CH_4$/head/year)는 21.4였고, 평균 메탄 전변율은 0.05이었으며, 공시축의 대사체중(metabolic BW, $kg^{0.75}$)과 메탄발생량(g/d)과는 높은 상관관계($R^2=0.8057$, p<0.001)를 보였다. 반추가축의 대표적인 사료급여방식 차이가 메탄발생량에 미치는 효과에 대한 결론을 얻기 위해서는 보다 많은 연구가 필요할 것으로 사료된다.

Keywords

References

  1. Aguerre, M.J., Wattiaux, M.A., Powell, J.M, Broderick, G.A. and Arndt, C. 2011. Effect of forage-to-concentrate ratio in dairy cow diets on emission of methane, carbon dioxide, and ammonia, lactation performance, and manure excretion. Journal of Dairy Science. 94:3081-3093. https://doi.org/10.3168/jds.2010-4011
  2. A.O.A.C. 1990. Official Methods of Analysis. 15th ed. Association of Official Analytical Chemists. Washington, D. C.
  3. Caplis, J., Keane, M.G., Moloney, A.P. and O'Mara, F.P. 2005. Effects of supplementary concentrate level with grass silage, and separate or total mixed ration feeding, on performance and carcass traits of finishing steers. Irish Journal of Agricultural and Food Research. 44:27-43.
  4. Cho, Y.M., Kwon, E.G., Chang S.S., Kim, T.I., Park, B.K., Kang S.W. and Paek, B.H. 2008. Effects of total mixed rations on growth performance and carcass characteristics of Hanwoo steers. Journal of animal Science and Technology (Kor.). 50:363-372. https://doi.org/10.5187/JAST.2008.50.3.363
  5. Gordon F.J., Patterson D.C., Uan T., Porter M.G., Mayne C.S. and Unsworth E.F. 1995. The enfluence of genetic index for milk production on the response to complete diet feeding an the utilization of energy and nitrogen. Animal Science 61:199-210. https://doi.org/10.1017/S1357729800013722
  6. Hales, K.E., Cole, N.A. and MacDonald, J.C. 2012. Effects of corn processing method and dietary inclusion of wet distillers grains with solubles on energy metabolism, carbon nitrogen balance, and methane emissions of cattle. Journal of Animal Science. 90:3174-3185. https://doi.org/10.2527/jas.2011-4441
  7. Holter, J.B., Urban, W.E., Hayes, H.H. and Davis, J.A. 1977. Utilization of diet components fed blended or separately to lactating cows. Journal of Animal Science. 60:1288-1293.
  8. Hristove, A.N., Oh, J., Firkins, L., Dijkstra, J., Kebreab, E., Waghorn, G., Makkar, H.P.S., Adesogan, A.T., Yang. W., Lee, C., Gerber, P.J., Henderson, B. and Tricarico, J.M. 2013. Special Topics-Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. Journal of Amimal Science. 91:5045-5069.
  9. Johnson, K.A. and Johnson, D.E. 1995. Methane emissions from cattle. Journal of Animal Science. 73:2483-2492. https://doi.org/10.2527/1995.7382483x
  10. KirchgeBner M., Windisch W. and Muller H.L. 1995. Nutritional factors for the quantification of methane production. In: Von Engelhardt, W, Leonhard-Marek S, Breves G, Giesecke D (eds.) Ruminant Physiology: Digestion, Metabolism, Growth and Reproduction: Proceedings of the Eighth International Symposium on Ruminant Physiology Ferdinand Enke Verlag, Stuttgart, pp. 333-348.
  11. Kim, K.H., Kim, K.S., Lee, S.C., Oh, Y.G., Chung, C.S. and Kim, K.J. 2003. Effects of total mixed rations on ruminal characteristics, digestibility and beef production of Hannwoo steers. Journal of animal Science and Technology (Kor.). 45: 387-396. https://doi.org/10.5187/JAST.2003.45.3.387
  12. Knapp, J.R., Laur, G.L., Vadas, P.A., Weiss, W.P. and Tricarico, J. M. 2014. Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. Journal of Dairy Science. 97:3231-3261. https://doi.org/10.3168/jds.2013-7234
  13. Kurihara, M., Magner, T., Hunter, R.A. and McCrabb, G.J. Methane production and energy partition of cattle in the tropics. British Journal of Nutrition. 81:227-234.
  14. Lana, R.P., Russell, J.B. and Van Amburgh, M.E. The role of regulating ruminal methane and ammonia production. Journal of Animal Science. 76:2190-2196. https://doi.org/10.2527/1998.7682190x
  15. Maekawa M., Beauchemin K.A. and Christensen D.A. 2002. Effect of concentrate level and feedign management on chewing activities, saliva production, and ruminal pH of lactating dairy cows. Journal of Dairy Science. 85:1165-1175. https://doi.org/10.3168/jds.S0022-0302(02)74179-9
  16. Maltz, E., Silanikove, N., Karaso, Y., Shefet, G., Meltzer, A. and Barak, M. 1991. A note on the effects of feeding total mixed ration on performance of dairy goats in late lactation. Animal Feed Science and Technology. 35:15-20. https://doi.org/10.1016/0377-8401(91)90095-A
  17. Moe, P.W. and Tyrrell, H.F. 1979. Methane production in dairy Cows. Journal of Dairy Science. 62:1583-1586. https://doi.org/10.3168/jds.S0022-0302(79)83465-7
  18. Moss, A.R., Jouany, J-P. and Newbold, J. 2000. Methane production by ruminants: its contribution to global warming. Annales De Zootechnie. 49:231-253. https://doi.org/10.1051/animres:2000119
  19. NRC (National Research Council), 2000. Nutrient requirements of beef cattle (update).
  20. Oh, Y,K., Kim, D.H., Moon, S.H., Park, J.H., Nam, I.S., Arokiyaraj, S. and Kim, K.H. 2014. Energy balance and methane production of hanwoo cows fed various kind of roughage. Journal of the Korean Society of Glassland and Forage Science. 34:283-287. https://doi.org/10.5333/KGFS.2014.34.4.283
  21. O'Mara, F. 2004. Greenhouse gas production from dairying: reducing methane production. Advances in Dairy technology. 16:295-309.
  22. Ostergaard, S. and Grohn, T.T. 2000. Concentrate feeding, dry matter intake, and metabolic disorders in Danish dary cows. Livestock Production Science. 65:107-118. https://doi.org/10.1016/S0301-6226(99)00174-8
  23. RDA, 2012. Korean feeding standard for Hanwoo. pp 26-27.
  24. Renna, M., Cornale, P., Lussiana, C., Battaglini, L.M., Turille, G. and Mimosi, A. 2014. Milk yield, gross composition and fatty acid profile of dual-purpose Aosta Red Pied cows fed separate concentrate-forage versus total mixed ration. Animal Science Journal. 85:37-45. https://doi.org/10.1111/asj.12083
  25. Seol, Y.J. Kim, K.H., Baek, Y.C., Lee, S.C., Ok, J.W., Lee, K.Y., Hong, S.K., Park, K.H., Choi, C.W., Lee, S.S. and Oh, Y.K. 2011. Comparison of methane production in Korean native cattle (Hanwoo) fed different grain sources. Journal of Animal Science & Technology. 53:161-169. https://doi.org/10.5187/JAST.2011.53.2.161
  26. Shibata, M., Terada, F., Kurihara, M., Nishida, T. and Iwasaki, T. 1993. Estimation of methane production in ruminant. Animal Science and Technology. 64:790-796.
  27. Yan T., Patterson D.C. and Gordon F.J. 1998. The effect of two methods of feeding the concentrate supplement to dairy cows of high genetic merit. Animal Science 67:395-403. https://doi.org/10.1017/S1357729800032793

Cited by

  1. Effect of Feeding Method on Methane Production per Dry Matter Intake in Holstein Steers vol.38, pp.4, 2018, https://doi.org/10.5333/KGFS.2018.38.4.260