DOI QR코드

DOI QR Code

Development Status and Research Direction in the Mineral Carbonation Technology Using Steel Slag

제철 슬래그를 이용한 광물 탄산화 기술의 개발 현황과 연구 방향

  • Son, Minah (Climate and Energy Research Group, Research Institute of industrial Science & Technology) ;
  • Kim, Gookhee (Climate and Energy Research Group, Research Institute of industrial Science & Technology) ;
  • Han, Kunwoo (Climate and Energy Research Group, Research Institute of industrial Science & Technology) ;
  • Lee, Min Woo (Department of Chemical Engineering, Keimyung University) ;
  • Lim, Jun Taek (New Business Department, POSCO Center)
  • 손민아 (포항산업과학연구원 기후에너지연구그룹) ;
  • 김국희 (포항산업과학연구원 기후에너지연구그룹) ;
  • 한건우 (포항산업과학연구원 기후에너지연구그룹) ;
  • 이민우 (계명대학교 화학공학과) ;
  • 임준택 (포스코 신사업실)
  • Received : 2016.09.13
  • Accepted : 2016.12.16
  • Published : 2017.04.01

Abstract

In the present paper, we investigated the development status of precipitated calcium carbonate (PCC) production using steel slag, which is one of mineral carbonation (MC) technologies, from the standpoint of $CO_2$ utilization. Principle, feature, and global and domestic development status of the mineral carbonation technology were discussed together with the overview of the production method and market of PCC. Mineral carbonation is known as stable and environmentally-friendly technology enabling economical treatment of industrials wastes. Typically, PCC is produced by the reaction of $CO_2$ with supernatant solution after Ca extraction from steel slag followed by the separation of solid and liquid. The development status of MC using steel slag is at the pilot stage (Slag2PCC at Aalto University), and there remains the process economics improvement for commercialization. Key technologies for the further development are efficient extraction of Ca ions from steel slag including impurities removal, valorization of PCC via shape and size control, usage development and value-addition of residual slag, and optimization of reaction conditions for continuous process setup, etc.

이논문에서는 $CO_2$ 활용기술관점에서광물탄산화기술의하나인제철슬래그를이용한침강성탄산칼슘(Precipitated Calcium Carbonate, PCC) 제조 기술의 개발 현황을 고찰하였다. 광물 탄산화 기술의 원리, 특징, 전세계적 개발 현향을 살펴보았고, PCC 제조기술 및 시장동향도 파악하였다. 광물 탄산화는 안정적이고 친환경적인 기술로, 산업 부산물의 경제적 처리를 가능하게 한다. 일반적으로 슬래그중 Ca 용출 및 고액 분리 과정후 상등액과 $CO_2$의 반응을 통해 탄산칼슘을 제조한다. 이 기술은 파일럿 단계까지 기술개발이 진행되었으며(알토대학교의 Slag2PCC), 상용화를 위해서는 경제성 증대가 필요할 것으로 판단된다. 개발을 위한 핵심 기술로는 슬래그로부터 Ca의 효과적 용출 및 불순물 제거, 탄산칼슘의 입도 및 입형 제어를 통한 고부가가치화, 잔사 슬래그의 활용방안 발굴, 연속공정 구현을 위한 반응 조건최적화 등을 들 수 있다.

Keywords

References

  1. http://www.amenews.kr/atc/n.view.asp?ik=10058.
  2. Lee, Y.-J., "Submission Trend of Intended Nationally Determined Contitubiton (INDC) and Its Total Effect," Climate Change and Green Growth, 10, 15-24(2015).
  3. Lee, J. H., Lee, D. W., Jang, S. G., Kwak, N. S., Lee, I. Y., Jang, K. R., Choi, J. S. and Shim, J. G., "Estimating $CO_2$ Emission Reduction of Non-Capture $CO_2$ Utilization (NCCU) Technology," Korean Chem. Eng. Res., 53(5), 590-596(2015). https://doi.org/10.9713/kcer.2015.53.5.590
  4. Sanna, A., Uibu, M., Caramanna, G., Kuusik, R. and Maroto-Valer, M., "A Review of Mineral Carbonation Technologies to Sequester $CO_2$," Chem. Soc. Rev., 43, 8049-8080(2014). https://doi.org/10.1039/C4CS00035H
  5. Lackner, K. S., "A Guide to $CO_2$ Sequestration," Science, 300 (2003).
  6. Inagendo, Carbon Capture Use & Storage(CCUS)(2013), http://www.inagendo.com/res/default/inagendo_ccus.pdf.
  7. DNV (Det Norske Veritas), Carbon Dioxide Utilization: Electrochemical Conversion of $CO_2$-Opportunities and Challenges, Position Paper 07-2011(2011).
  8. Arakawa, H., Aresta, M., Armor, J. N., Barteau, M. A. and Beckman, E. J., "Catalysis Research of Relevance to Carbon Management: Progress, Challenges, and Opportunities," Chem. Rev., 101, 953-996(2001). https://doi.org/10.1021/cr000018s
  9. KIMS (Korea Institute of Materials Science), "Chemical Conversion Technology of Carbon Dioixde," MateriALL, 2013, 483-506(2013).
  10. Kim, K. H., "Carbon Dioxide Capture, Storage and Utilization Technology," KISTI Market Report, 2(12), (2012).
  11. Gronund & Precipitated Calcium Carbonate: Global Industry Markets & Outlook 2012, http://vmpc.com.vn.
  12. Quadrelli, E. A., Centi, G., Duplan, J. L. and Perathoner, S., "Carbon Dioxide Recycling: Emerging Large-Scale Technologies with Industrial Potential," ChemSusChem., 4, 1194-1215(2011). https://doi.org/10.1002/cssc.201100473
  13. http://www.businesswire.com/news/home/20160128005866/en/Global-Polyolefins-PO-Market-Drivers-Challenges-Trends.
  14. http://www.prnewswire.com/news-releases/global-acetic-acid-market---segmented-by-application-and-geography---trends-and-forecasts-2015-2020---reportlinker-review-300145381.html.
  15. Kim, H. S., Chae, S.-C., Ahn, J. W. and Jang, Y.-N., "$CO_2$ Fixation Technology by Mineral Carbonation," Mineral Science and Industry, 22(1), 71-85(2009).
  16. Kim, K. H., "Carbon Dioxide Storage by Mineral Carbonation," KISTI Market Report, 4(1), (2014).
  17. Abass A. Olajire, "A Review of Mineral Carbonation Technology in Sequestration of $CO_2$," J. Petrol. Sci. Eng., 109, 364-392 (2013). https://doi.org/10.1016/j.petrol.2013.03.013
  18. Intergovernmental Panel on Climate Change, Carbon Dioxide Capture and Storage, IPCC Special Report, Cambridge University Press(2005).
  19. Han, K., Rhee, C. H. and Chun, H. D., "Feasibility of Mineral Carbonation Technology as a $CO_2$ Storage Measure Considering Domestic Industrial Environment," Korean Chem. Eng. Res., 49(2), 137-150(2011). https://doi.org/10.9713/kcer.2011.49.2.137
  20. Perry, R. H., Green, D., Perry's Chemical Engineers' handbook, 6th Ed., McGraw-Hill(1984).
  21. GCCSI, Accelerating the Uptake of CCS: Industrial Use of Captured Carbon Dioxide(2011).
  22. Lee, J. H., Lee, D. W. and Shim, J. G., "Development Status of $CO_2$ Utilization Technology," KIC News, 18(3), 28-40(2015).
  23. http://skyonic.com/technologies/skymine.
  24. http://www.calera.com.
  25. http://www.twence.com.
  26. http://www.solvay.com.
  27. Mattila, H.-P., "Utilization of Steelmaking Waste Materials for Production of Calcium Carbonate($CaCO_3$)," Department of Chemical Engineering, Doctor of Technology Thesis, Abo Akademi University, Turku(2014).
  28. Lee, J. H., Lee, D. W., Jang, S. G., Kwak, N. S., Lee, I. Y. and Jang, K. R, "Economic Evaluations for the Carbon Dioxide-Involoved Production of High-Value Chemicals," Korean Chem. Eng. Res., 52(3), 347-354(2014). https://doi.org/10.9713/kcer.2014.52.3.347
  29. Kim, D. W., "Trend and Prospect of High-value-added Mineralization Technology Using $CO_2$," Monthly Electrical Journal, 461, 26-29(2015).
  30. http://www.dwconst.re.kr/skill/skill02_6.asp.
  31. http://www/kcrc.re.kr.
  32. Park, H. S., "Formation Behavior of Precipitated Calcium Carbonate Polymorphs Follwing Nucleation Rate," Department of Resource Engineering, M.S. Thesis, Inha University, Incheon(2005).
  33. Han, Y. S., Hadiko, G., Fuji, M. and Takahashi, M., "Effect of Flow Rate and $CO_2$ Content on the Phase and Morphology of $CaCO_3$ Prepared by Bubbling Method," J. Cryst. Growth, 276, 514-548(2005).
  34. IHS Markit, Chemical Economics Handbook: Calcium Carbonate, Find-Ground and Precipitated(2014), https://www.ihs.com/products/fine-ground-and-precipitated-chemical-economics-handbook.html.
  35. Roskill Information Services, "Ground & Precipitated Calcium Carbonate: Global Industry Markets & Outlook," 1st Ed., (2012).
  36. Stratton P., "An Overview of the North American Calcium Carbonate Market," Oct. 2012, https://roskill.com/wp/wp-content/uploads/2014/11/download-roskills-paper-on-the-north-americancalcium-carbonate-market.attachment1.pdf.
  37. Mattila, H. P., Hudd, H. and Zevenhoven, R., "Cradle-to-Gate Life Cycle Assessment of Precipitated Calcium Carbonate Production from Steel Converter Slag," J. Clean. Prod., 84, 611-618 (2014). https://doi.org/10.1016/j.jclepro.2014.05.064
  38. Kirboga, S. and Oner, M., "Effect of the Experimental Parameters on Calcium Carbonate Precipitation," Chem. Eng. Trans., 32, 2119-2124(2013).
  39. Han, Y. S., Hadiko, G., Fuji, M. and Takahashi, M., "Factors Affecting the Phase and Morphology of $CaCO_3$ Prepared by a Bubbling Method," J. Eur. Ceram. Soc., 26, 843-847(2006). https://doi.org/10.1016/j.jeurceramsoc.2005.07.050
  40. Hadiko, G., Han, Y. S., Fuji, M. and Takahashi, M., "Synthesis of Hollow Calcium Carbonate Particles by the Bubble Templating Method," Mater. Letter., 59, 2519-2522(2005). https://doi.org/10.1016/j.matlet.2005.03.036
  41. Han, Y. S., Hadiko, G., Fuji, M. and Takahashi, M., "Crystallization and Transformation of Vaterite at Controlled pH," J. Cryst. Growth, 289, 269-274(2006). https://doi.org/10.1016/j.jcrysgro.2005.11.011
  42. Matsushita, I., Hamada, Y., Moriga, T., Ashida, T. and Nakabayashi, I., "Synthesis of Vaterite by Carbonation Process in Aqueous System," J. Ceram. Soc. Jpn., 104(11), 1081-1084(1996). https://doi.org/10.2109/jcersj.104.1081
  43. Domingo, C., Garcia-Carmona, J., Loste, E., Fanovich, A., Fraile, J. and Gomez-Morales, J., "Control of Calcium Carbonate Morphology by Precipitation in Compressed and Supercritical Carbon Dioxide Media," J. Cryst. Growth, 271(1-2), 268-273(2004). https://doi.org/10.1016/j.jcrysgro.2004.07.060
  44. Lee, T. J., Seo, J. H. and Kim, H. J., "Morphological Analysis of Engineered PCC by Gas-Liquid Mixing Conditions," TAPPI. J., 43(3), (2011).
  45. Bang, J. H., Jang, Y. N., Kim, W., Song, K. S., Jeon, C. W., Chae, C. S. Lee, S. W., Park, S. J. and Lee, M. G., "Precipitation of Calicium Carbonate by Carbon Dioxide Microbubbles," Chem. Eng. J., 174, 413-320(2011). https://doi.org/10.1016/j.cej.2011.09.021
  46. Bang, J. H., Jang, Y. N., Kim, W., Song, K. S., Jeon, C. W., Chae, C. S. Lee, S. W., Park, S. J. and Lee, M. G., "Specific Surface Area and Particle Size of Calcium Carbonate Precipitated by Carbon Dioxide Microbubbles," Chem. Eng. J., 198-199, 254-260(2012). https://doi.org/10.1016/j.cej.2012.05.081
  47. Cho, B. S., Lee, H. H. and Kim, G. Y., "Status and Prospects of Recycling Blast Furnace Slag," Megazine of RCR, 7(3), 9-12(2012), in Korean.
  48. Choi, J. S., "The Status and Utilization Prospect of Steel Making Slag," Architecture, 56(08), 18-22(2012).
  49. Jeon, J. G., Jin, S. J. and Kim, D. H., "Present Status and Recycling Technology for Slag in Korea," Megazine of RCR, 8(1), 8-10(2013).
  50. Rawlins, C. H., "Geological Sequestration of Carbon Dioxide by Hydrous Carbonate Formation in Steelmaking Slag," Department of Metallurgical Engineering, Ph.D. Dissertation, Missouri University of Science and Technology, Rolla(2008).
  51. Kim, D. and Kim, M.-J., "Mineral Carbonation Using Industrial Waste," J. Korea Soc. Waste Mgmt., 32(4), 317-328(2015). https://doi.org/10.9786/kswm.2015.32.4.317
  52. Chiang, Y. W., Santos, R. M., Elsen, J., Meesschaert, B., Martens, J. A. and Van Gerven, T., "Towards Zero-Waste Mineral Carbon Sequestration via Two-Way Valorization of Ironmaking Slag," Chem. Eng. J., 249, 260-269(2014). https://doi.org/10.1016/j.cej.2014.03.104
  53. Eloneva, S., Teir, S., Salminen, J., Fogelholm, C. J. and Zevenhoven, R., "Fixation of $CO_2$ by Carbonating Calcium Derived from Blast Furnce Slag," Energy, 33(9), 1461-1467(2008). https://doi.org/10.1016/j.energy.2008.05.003
  54. Said, A., Mattila, H. P., Jarvinen, M. and Zevenhoven, R., "Production of Precipitated Calcium Carbonate (PCC) from Steelmaking Slag for Fixation of $CO_2$," Appl. Energy, 112, 765-771 (2013). https://doi.org/10.1016/j.apenergy.2012.12.042
  55. Kunzler, C., Alves, N., Pereira, E., Nienczewski, J., Ligabue, R., Einloft, S. and Dullius, J., "$CO_2$ Storage with Indirect Carbonation Using Industrial Waste," Energy Procedia, 4, 1010-1017(2011). https://doi.org/10.1016/j.egypro.2011.01.149
  56. Kodama, S., Nishimoto, T., Yamamoto, N., Yogo, K. and Yamada, K., "Development of a New pH-Swing $CO_2$ Mineralization Process with a Recyclable Reaction Solution," Energy, 33, 778-784 (2008).
  57. Sun, Y., Yao, M. S., Zhang, J. P. and Yang, G., "Indirect $CO_2$ Mineral Sequestration by Steelmaking Slag with $NH_4Cl$ as Leaching Solution," Chem. Eng. J., 173, 437-445(2011). https://doi.org/10.1016/j.cej.2011.08.002
  58. Mun, M. W. and Cho, M. H., "Mineral Carbonation for Carbon Sequestration with Industrial Waste," Energy Procedia, 37, 6999-7005(2013). https://doi.org/10.1016/j.egypro.2013.06.633
  59. Kwack, J.-S., "Study on the $CO_2$ Gas Fixation Using the Construction Byproducts through the Chemical Pre-treatment and Wet Mineral Carbonation," Department of Architecture Engineering, M.S. Thesis, Hanyang University, Ansan(2013).
  60. Song, H. Y., Seo, J. B., Kang, S. K., Ki,, I. D., Choi, B. W. and Oh, K. J., "$CO_2$ Fixation by Magnesium Hydroxide from Ferro-Nickel Slag," Clean Tech., 20(1), 42-50(2014). https://doi.org/10.7464/ksct.2014.20.1.042
  61. Baek, S. H., Park, J. H., Heo, D. M., K. R. Patent 1009585930000 (2010).
  62. Mattila, H. P., Grigaliunaite, I. and Zevenhoben, R., "Chemical Kinetics Modelling and Pocess Parameter Sensitivity for Precipitated Calcium Carbonate Production from Steelmaking Slags," Chem. Eng. J., 192, 77-89(2012). https://doi.org/10.1016/j.cej.2012.03.068
  63. Said, A., Laukkanen, T. and Jarvinen, M., "Pilot-scale Experimental Work on Carbon Dioxide Sequestration Using Steelmaking Slag," Appl. Energy, 177, 602-6111(2016). https://doi.org/10.1016/j.apenergy.2016.05.136
  64. Chung, S. Y., Lee, K. C., Cho, M. H., Sohn, S. G., Park, D. C., K. R. Patent 1012512640000(2013).
  65. Santos, R. M., Francois, D., Mertens, G., Elsen, J. and Van Gerven, T., "Ultrasound-Intensified Mineral Carbonation," Appl. Therm. Eng., 57(1), 154-163(2013). https://doi.org/10.1016/j.applthermaleng.2012.03.035
  66. Huijgen, W. J. J., Comans, R. N. J. and Witkamp, G. J., "Cost Evaluation of $CO_2$ Sequestration by Aqueous Mineral Carbonation," Energy Convers. Mgmt., 48, 1923-1935(2007). https://doi.org/10.1016/j.enconman.2007.01.035
  67. Eloneva, S., "Reduction of $CO_2$ Emissions by Mineral Carbonation: Steelmaking Slags as a Raw Material with a Pure Calcium Carbonate End Product," Ph.D. Dissertation, Department of Energy Technology, Aalto University, Espoo(2010).
  68. Eloneva, S., Said, A., Fogelholm, C.-J. and Zevenhoven, R., "Preliminary Assessment of a Method Utilizing Carbon Dioxide and Steelmaking Slags to Produce Precipitated Calcium Carbonate," Appl. Energy, 90, 329-334(2012). https://doi.org/10.1016/j.apenergy.2011.05.045
  69. Lee, S., Kim, J.-W., Chae, S., Bang, J.-H. and Lee, S.-W., "$CO_2$ Sequestration Technology through Mineral Carbonation: An Extraction and Carbonation of Blast Slag," J. $CO_2$ Util., 16, 336- 345(2016). https://doi.org/10.1016/j.jcou.2016.09.003
  70. Giannoulakis, S., Volkart, K. and Bauer, C., "Life Cycle and Cost Assessment of Mineral Carbonation for Carbon Capture and Storage in European Power Generation," Int. J. Greenhouse Gas Control, 21, 140-157(2014). https://doi.org/10.1016/j.ijggc.2013.12.002
  71. Teir, S., Kotiranta, T., Pakarinen, J. and Mattila, H.-P. "Case Study for Production of Calcium Carbonate from Carbon Dioxide in Flue Gases and Steelmaking Slag," J. $CO_2$ Util., 14, 37-46(2016). https://doi.org/10.1016/j.jcou.2016.02.004
  72. Lekakh, S. N., Rawlins, C. H., Robertson, D. G. C., Richards, V. L. and Peaslee, K. D., "Kinetics of Aqueous Leaching and Carbonization of Steelmaking Slag," Metall. Mater. Trans. B, 39B, 125-134(2008).
  73. Park, S., Na, J., Kim, M., An, J., Lee, C. and Han, C., "$CO_2$ Mineral Carbonation Reactor Analysis using Computational Fluid Dynamics: Internal Reactor Design Study for the Efficient Mixing of Solid Reactants in the Solution," Korean Chem. Eng. Res., 54(5), 612-620(2016). https://doi.org/10.9713/kcer.2016.54.5.612
  74. Kim, S., Ko, J. W. and Park, C. B., "Bio-Isprired Mineralization of $CO_2$ Gas to Hollow $CaCO_3$ Microspheres and Bone Hydroxyapatite/ Polymer Composites," J. Mater. Chem., 21, 11070-11073 (2011). https://doi.org/10.1039/c1jm12616d
  75. Karakas, F., Hassas, B. V. and Celik, M. S., "Effect of Precipitated Calcium Carbonate Additions on Waterborne Paints at Different Pigment Volume Concentrations," Prog. Org. Coat., 83, 64-70(2015). https://doi.org/10.1016/j.porgcoat.2015.02.003
  76. https://en.wikipedia.org/wiki/Standard_enthalpy_of_formation.

Cited by

  1. 슬래그 내 양이온 추출 및 불순물 분리 연구 vol.25, pp.4, 2017, https://doi.org/10.7464/ksct.2019.25.4.309
  2. 산/염기성 물질 주입에 따른 칼슘이온 분리 특성 연구 vol.31, pp.1, 2017, https://doi.org/10.14478/ace.2020.1001