DOI QR코드

DOI QR Code

Convergence Study on Damage of the Bonded Part at TDCB Structure with the Laminate Angle Manufactured with CFRP

CFRP로 제작된 적층각도를 가진 TDCB 구조물에서의 접착부의 파손에 관한 융합 연구

  • Lee, Dong-Hoon (Department of Mechanical & Automotive Engineering, Graduate School, Kongju University) ;
  • Cho, Jae-Ung (Department of Mechanical & Automotive Engineering, Kongju National University)
  • 이동훈 (공주대학교 대학원 기계공학과) ;
  • 조재웅 (공주대학교 기계자동차공학부)
  • Received : 2018.10.04
  • Accepted : 2018.12.20
  • Published : 2018.12.28

Abstract

In this study, CFRP was manufactured with the laminate angle of $45^{\circ}$. The specimen of TDCB bonded with the adhesive for structure was designed by CATIA and the analysis was progressed by using the finite element analysis program of ANSYS. This study model was designed on the basis of British industry and ISO standard and the configuration factor(m) was established with variable according to the angle of model configuration. As the study result of this paper, the maximum deformations at the specimens with the tapered angles of $4^{\circ}$ and $8^{\circ}$ become most as 12.628 mm and least as 12.352mm respectively. Also, the maximum equivalent stresses at the specimens with the tapered angles of $6^{\circ}$ and $8^{\circ}$ become most as 9210.3 MPa and least as 4800.5 MPa respectively. The damage data of TDCB structure with the laminate angle which was manufactured with CFRP could be secured through this study result. As the damage data of TDCB structure bonded with CFRP obtained on the basis of this study result are utilized, the esthetic sense can be shown by being grafted onto the machine or structure at real life.

본 연구에서는 CFRP를 적층각도 45도로 제작하고 구조용 접착제로 접착된 TDCB(Tapered Double Cantilever Beam) 시험편을 CATIA로 설계를 하였고, 유한요소해석 프로그램인 ANSYS를 이용하여 해석을 진행하였다. 연구 모델은 영국 산업 및 ISO 표준에 기초하여 설계하였으며, 모델 형상의 각도에 따라서 형상계수(m)를 변수로 설정하였다. 본 논문의 연구 결과로서, 모든 해석 시험편들 중에서 $4^{\circ}$ 인 경사 각도를 가진 시험편에서 최대 변형량은 12.628mm로 가장 높았으며 $8^{\circ}$에서 12.352mm으로 가장 낮은 값을 각각 보였다. 또한, 최대등가응력은 그 각도가 $6^{\circ}$에서 9210.3MPa가장 높았으며 $8^{\circ}$에서 4800.5MPa로 가장 낮은 값을 각각 보였다. 본 연구 결과를 통하여 CFRP로 제작된 적층각도를 가진 TDCB 구조물의 파손데이터를 확보할 수 있었으며, 본 연구결과를 토대로 얻은 CFRP로 접착된 TDCB 구조물의 파손데이터를 활용함으로서 실생활에서의 기계나 구조물에 융합하여 그 미적 감각을 나타낼 수 있다.

Keywords

OHHGBW_2018_v9n12_175_f0001.png 이미지

Fig. 1. Laminate angle of CFRP

OHHGBW_2018_v9n12_175_f0002.png 이미지

Fig. 2. Study model and analysis condition

OHHGBW_2018_v9n12_175_f0003.png 이미지

Fig. 3. Total deformations of TDCB specimens at models 1, 2, 3, 4

OHHGBW_2018_v9n12_175_f0004.png 이미지

Fig. 4. Equivalent stresses of TDCB specimens at models 1, 2, 3, 4

Table 1. Material property of CFRP

OHHGBW_2018_v9n12_175_t0001.png 이미지

References

  1. J. U. Cho. (2014). Structure Safety Analysis on Crack Propagation in Compact Tension Specimen. Journal of the Korea Convergence Society, 5(1), 23-27. DOI : 10.15207/JKCS.2014.5.1.023
  2. J. W. Park & J. U. Cho. (2017). Convergence Study on Composite Material of Unidirectional CFRP and SM 45C Sandwich Type that Differs in Stacking Angle. Journal of the Korea Convergence Society, 8(7), 231-236. DOI : 10.15207/JKCS.2017.8.7.231
  3. G. W. Hwang & J. U. Cho. (2017). Analysis Study on the Damage of Crack Happening with the Bending at CFRP Plate due to Stacking Angle. Journal of the Korea Convergence Society, 8(3), 185-190. DOI : 10.15207/JKCS.2017.8.3.185
  4. J. H. Lee & J. U. Cho. (2016). An Analytical Study on Crack Behavior Inside Standard Compact Tension Specimen with Holes. Transactions of the Korean Society of Mechanical Engineers - A, 40(6), 531-537. DOI : 10.3795/KSME-A.2016.40.6.531
  5. G. W. Hwang & J. U. Cho. (2017). Convergence Study on Durability Improvement due to Radius of Arch Type at CFRP Structure with Stacking Angle. Journal of the Korea Convergence Society, 8(7), 219-224. DOI : 10.15207/JKCS.2017.8.7.219
  6. J. H. Lee & J. U. Cho. (2016). Evaluation on Strength and Durability of Tensile Specimens of CFRP and Metal with Notches. Journal of the Korean Society of Mechanical Technology, 18(6). 867-872. DOI : 10.17958/ksmt.18.6.201612.867
  7. C. S. Seak & S. Y. Kim. (2000). Variation of the Fracture Resistance Curve with the Change of a Size in the CT Specimen. Transactions of the Korean Society of Mechanical Engineers - A, 24(12), 2963-2971. https://doi.org/10.22634/KSME-A.2000.24.12.2963
  8. G. W. Hwang, J. U. Cho & C. D. Cho. (2016). A Property of Crack Propagation at the Specimen of CFRP with Layer Angle. Transactions of the Korean Society of Mechanical Engineers - A, 40(12), 1013-1019. DOI : 10.3795/KSME-A.2016.40.12.1013
  9. T.A. Sebaey & E. Mahdi. (2014). Behavior of pyramidal lattice core sandwich CFRP composites under biaxial compression loading. Composite Structures, 116, 67-74. DOI : 10.1016/j.compstruct.2014.05.014
  10. J. H. Lee & J. U. Cho. (2016). Convergence Technique Study of Durability Analysis due to the Track Pad Shape of Track Vehicle with Heavy Weight. Journal of the Korea Convergence Society, 7(1), 177-182. DOI : 10.15207/JKCS.2016.7.1.177
  11. M. S. Kang, H. S. Park, J. H. Choi, J. M. Koo & C. S. Seok. (2012). Prediction of Fracture Strength of Woven CFRP Laminates According to Fiber Orientation. Transactions of the Korean Society of Mechanical Engineers - A, 36(8), 881-887. DOI : 10.3795/KSME-A.2012.36.8.881
  12. J. U. Cho. (2014). Analytical Study on Durability due to the Load of Artificial Knee Joint. Journal of the Korea Convergence Society, 5(2), 7-11. DOI : 10.15207/JKCS.2014.5.2.007
  13. J. H. Lee & J. U. Cho. (2016). A Study on Impact Fracture on CFRP Sandwich Composite and CFRP Sandwich Composite with Aluminum Foam Core. Journal of the Korean Society of Mechanical Technology, 18(2), 214-219. DOI : 10.17958/ksmt.18.2.201604.214
  14. J. Cao, K. Cai, Q. Wang & J. Shi. (2016). Damage behavior of a bonded sandwithc beam with corrugated core under 3-point bending. Materials and Design, 95(4), 165-172. DOI : 10.1016/j.matdes.2016.01.083
  15. K. C. Park & M. S. Kim. (1994). Analysis of the Residual Strengths and Failure Mechanisms in Laminated Composites under Impact Loading. Journal of the Korean Society for Precision Engineering, 11(3), 105-121.