DOI QR코드

DOI QR Code

Electrochemical Performance of Graphite/Silicon/Carbon Composites as Anode Materials for Lithium-ion Batteries

리튬이온배터리 Graphite/Silicon/Carbon 복합 음극소재의 전기화학적 성능

  • Jo, Yoon Ji (Department of Chemical Engineering, Chungbuk National University) ;
  • Lee, Jong Dae (Department of Chemical Engineering, Chungbuk National University)
  • Received : 2018.03.17
  • Accepted : 2018.05.01
  • Published : 2018.06.01

Abstract

In this study, Graphite/Silicon/Carbon (G/Si/C) composites were synthesized to improve the electrochemical properties of Graphite as an anode material of lithium ion battery. The prepared G/Si/C composites were analyzed by XRD, TGA and SEM. Also the electrochemical performances of G/Si/C composites as the anode were performed by constant current charge/discharge, rate performance, cyclic voltammetry and impedance tests in the electrolyte of $LiPF_6$ dissolved inorganic solvents (EC:DMC:EMC=1:1:1 vol%). Lithium ion battery using G/Si/C electrode showed better characteristics than graphite electrode. It was confirmed that as the silicon content increased, the capacity increased but the capacity retention ratio decreased. Also, it was shown that both the capacity and the rate performances were improved when using the Silicon (${\leq}25{\mu}m$). It is found that in the case of 10 wt% of Silicon (${\leq}25{\mu}m$), G/Si/C composites have the initial discharge capacity of 495 mAh/g, the capacity retention ratio of 89% and the retention rate capability of 80% in 2 C/0.1 C.

본 연구에서는리튬이온전지음극활물질로 Graphite의 전기화학적특성을향상시키기 위하여 Graphite/Silicon/Carbon (G/Si/C) 복합소재를 제조하였다. 제조된 G/Si/C 합성물은 XRD, TGA, SEM을 사용하여 물성을 분석하였다. 또한 $LiPF_6$ (EC:DMC:EMC=1:1:1 vol%) 전해액에서 리튬이차전지의 충 방전 사이클, 율속, 순환전압전류 및 임피던스 테스트를 통해 전기화학적 성능을 조사하였다. G/Si/C 전극을 사용한 리튬이온전지는 Graphite 전극을 사용한 전지보다 우수한 특성을 나타내었으며 Silicon 함량이 늘어날수록 용량은 높아지나 안정성이 저하됨을 확인하였다. 또한 $25{\mu}m$ 이하의 Silicon을 사용하였을 때 용량과 안정성 모두 향상되는 것을 나타내었다. Silicon (${\leq}25{\mu}m$) 10 wt%인 경우 G/Si/C 복합소재는 495 mAh/g의 초기 방전 용량, 89%의 용량 보존율과 2 C/0.1 C에서 80%의 속도 특성을 보였다.

Keywords

References

  1. Kim, J. S., Pfleging, W., Kohler, R., Seifert, H. J., Kim, T. Y., Byun, D. J., Jung, H. G., Choi, W. C. and Lee, J. K., "Three-dimensional Silicon/Carbon Coreshell Electrode as An Anode Material for Lithium-ion Batteries," J. Power Sources, 279, 13-20 (2015). https://doi.org/10.1016/j.jpowsour.2014.12.041
  2. Chena, H., Wang, Z., Houa, X., Fuc, L., Wang, S., Hu, X., Qin, H., Wu, Y., Ru, Q., Liu, X. and Hu, S., "Mass-producible Method for Preparation of A Carbon-coated Graphite@plasma Nano-silicon@carbon Composite with Enhanced Performance as Lithium Ion Battery Anode," Electrochim. Acta, 249, 113-121(2017). https://doi.org/10.1016/j.electacta.2017.07.146
  3. Han, Y. J., Kim, J., Yeo, J. S., An, J. C., Hong, I. P., Nakabayashi, K., Miyawaki, J., Jung, J. D. and Yoon, S. H., "Coating of Graphite Anode with Coal Tar Pitch as An Effective Precursor for Enhancing the Rate Performance in Li-ion Batteries: Effects of Composition and Softening Points of Coal Tar Pitch," CARBON, 94, 432-438 (2015). https://doi.org/10.1016/j.carbon.2015.07.030
  4. Hwang, J. W. and Lee, J. D., "Electrochemical Characteristics of PFO pitch Anode prepared by Chemical Activation for Lithium Ion Battery," Korean Chem. Eng. Res., 55(3), 307-312(2017). https://doi.org/10.9713/KCER.2017.55.3.307
  5. Thackeray, M. M., Wolverton, C. and Isaacs, E. D., "Electrical Energy Storage for Transportation-approaching the Limits of and Going Beyond, Lithium-ion Batteries," Energy Environ. Sci., 5, 7854-7863(2012). https://doi.org/10.1039/c2ee21892e
  6. Ohtaa, N., Nagaokab, K., Hoshib, K., Bitohb, S. and Inagakic, M., "Carbon-coated Graphite for Anode of Lithium Ion Rechargeable Batteries: Graphite Substrates for Carbon Coating," J. Power Sources, 194, 985-990(2009). https://doi.org/10.1016/j.jpowsour.2009.06.013
  7. Nozakia, H., Nagaokab, K., Hoshib, K., Ohtaa, N. and Inagakic, M., "Carbon-coated Graphite for Anode of Lithium Ion Rechargeable Batteries: Carbon Coating Conditions and Precursors," J. Power Sources, 194, 486-493(2009). https://doi.org/10.1016/j.jpowsour.2009.05.040
  8. Bourderau, S., Brousse, T. and Schleich, D. M., "Amorphous Silicon as A Possible Anode Material for Li-ion Batteries," J. Power Sources, 81-82, 233-236(1999). https://doi.org/10.1016/S0378-7753(99)00194-9
  9. Jo, Y. N., Kim, Y., Kim, J. S., Song, J. H., Kim, K. J., Kwag, C. Y., Lee, D. J., Park, C. W. and Kim, Y. J., "Si-graphite Composites as Anode Materials for Lithium Secondary Batteries," J. Power Sources, 195, 6031-6036(2010). https://doi.org/10.1016/j.jpowsour.2010.03.008
  10. Wang, G. X., Ahn, J. H., Yao, J., Bewlay, S. and Liu, H. K., "Nanostructured Si-C Composite Anodes for Llithium-ion Batteries," Electrochem. commun., 6, 689-692(2004). https://doi.org/10.1016/j.elecom.2004.05.010
  11. Lee, J. H., Kim, W. J., Kim, J. Y., Lim, S. H. and Lee, S. M., "Spherical Silicon/Graphite/Carbon Composites as Anode Material for Lithium-ion Batteries," J. Power Sources, 176, 353-58 (2008). https://doi.org/10.1016/j.jpowsour.2007.09.119
  12. Lai, J., Guo, H., Wang, Z., Li, X., Zhang, X., Wu, F. and Yue, P., "Preparation and Characterization of Flake Graphite/Silicon/Carbon Spherical Composite as Anode Materials for Lithium-ion Batteries," J. Alloys Compd., 530, 30-5(2012). https://doi.org/10.1016/j.jallcom.2012.03.096
  13. Jung, M. Z., Park, J. Y. and Lee, J. D., "Electrochemical Characteristics of Silicon/Carbon Composites with CNT for Anode Material," Korean Chem. Eng. Res., 54(1), 16-21(2016). https://doi.org/10.9713/kcer.2016.54.1.16
  14. Su, M., Wang, Z., Guo, H., Li, X., Huang, S. and Gan, L., "Silicon, Flake Graphite and Phenolic Resin-pyrolyzed Carbon Based Si/C Composites as Anode Material for Lithium-ion Batteries," Adv. Powder Technol., 24, 921-25(2013). https://doi.org/10.1016/j.apt.2013.01.002
  15. Ko, H. S., Choi, J. E. and Lee, J. D., "Electrochemical Characteristics of Lithium Ion Battery Anode Materials of Graphite/$SiO_2$," Appl. Chem. Eng., 25, 592-597(2014). https://doi.org/10.14478/ace.2014.1094
  16. Wang, H., Xie, J., Zhang, S., Cao, G. and Zhao, X., "Scalable Preparation of Silicon@graphite/carbon Microspheres as High-performance Lithium-ion Battery Anode Materials," RSC Adv., 6, 69882-69888(2016). https://doi.org/10.1039/C6RA13114J
  17. Gan, L., Guo, H., Wang, Z., Li, X., Peng, W., Wang, J., Huang, S. and Su, M., "A Facile Synthesis of Graphite/Silicon/Graphene Spherical Composite Anode for Lithium-ion Batteries," Electrochim. Acta, 104, 117-123(2013). https://doi.org/10.1016/j.electacta.2013.04.083
  18. Jung, M. J. and Lee, J. D., "Electrochemical Performance of Hollow Silicon/Carbon Anode Materials for Lithium Ion Battery," Appl. Chem. Eng., 26, 80-85(2016).
  19. Wu, J., Tu, W., Zhang, Y., Guo, B., Li, S., Zhang, Y., Wang, Y. and Pan, M., "Poly-dopamine Coated Graphite Oxide/Silicon Composite as Anode of Lithium Ion Batteries," Powder Technol., 311, 200-205(2017). https://doi.org/10.1016/j.powtec.2017.01.063
  20. Yang, Y., Wang, Z., Zhou, Y., Guo, H. and Li, X., "Synthesis of Porous Si/graphite/carbon Nanotubes@c Composites as a Practical High-capacity Anode for Lithium-ion Batteries," Mater. Lett., 199, 84-87(2017). https://doi.org/10.1016/j.matlet.2017.04.057

Cited by

  1. 수열 합성법으로 제조된 구형의 실리콘/탄소 음극소재의 전기화학적 특성 vol.59, pp.3, 2018, https://doi.org/10.9713/kcer.2021.59.3.326