The Analysis of Water Quality and Suspended Solids Effects against Transparency of Major Artificial Reservoirs in Korea.

우리나라 주요 인공호의 투명도에 대한 수질 및 수중 부유물 영향 분석

  • Kong, Keon-Hwa (College of Biological Sciences and Biotechnology, Chungnam National University) ;
  • Lee, Jae-Hoon (College of Biological Sciences and Biotechnology, Chungnam National University) ;
  • An, Kwang-Guk (College of Biological Sciences and Biotechnology, Chungnam National University)
  • 공건화 (충남대학교 생명시스템과학대학) ;
  • 이재훈 (충남대학교 생명시스템과학대학) ;
  • 안광국 (충남대학교 생명시스템과학대학)
  • Published : 2009.06.30

Abstract

This study was carried out to comparatively identify characteristics of turbid water influence in Imha Reservoir, Soyang Reservoir, and Daecheong Reservoir in Korea. We used 3 years dataset from 2002 to 2004 and analyzed seasonal water quality characteristics, particular parameters in association with turbidity, and light transparency to figure out the trends. All parameters to be used in the study were total phosphate (TP), total nitrogen (TN), chlorophyll-${\alpha}$ (Chl), suspended solids (SS), Secchi depth (SD), conductivity, and verticallight extinction coefficienct($K_d$), euphotic zone ($Z_{eu}$), and critical depth ($Z_p$). All parameters depend on season and watershed. Suspended solids from Soyang Reservoir were usually caused by TP, mainly related to living wastes and agricultures in upper stream. Daecheong Reservoir was influenced by organic matters related to large phytoplankton biomass in summer and inorganic suspended solids by nutrients in the winter. However, in case of Imha Reservoir, turbid water, consisted in silt and clay through heavy precipitation remained in the waterbody to decrease water transparency along with TP and caused the light limitation in winter. Overall results suggest that it was necessary to establish various management programs because the reasons occurring turbidity were varied according to the reservoir circumstances.

Keywords

References

  1. 권영호, 한선임, 이준배. 2002. 대청호 유역 오염부하량 산정. 한국상하수도학회지 16(5): 581-595
  2. 김범철, 정성민. 2007. 소양호의 탁수발생 실태와 환경학적 영향. 대한환경공학회지 29(11): 1185-1190
  3. 김범철, 조규송, 허우명, 김동섭. 1989. 소양호 부영양화의 연변화 추이. 한국육수학회지 22(3): 151-158
  4. 김범철, 허우명, 황길순, 김동섭, 최광순. 1995. 소양호에서 인의 존재 형태별 분포에 관하여. 한국육수학회지 28(2): 151-157
  5. 김윤희, 김범철. 2004. 대형댐에서 부유물질의 중층이동과 모델링. 한국생물과학협회 학술발표대회 초록집 8: 31
  6. 김자현, 서진원, 나영언, 안광국. 2007. 용담댐 건설후 하류부 하천 생태계의 탁수영향 평가. 한국육수학회지 40(1): 130-142
  7. 김재윤. 2003. 총인부하량을 이용한 인공호의 부영양화 평가. 한국환경과학회지 12(7):689-695
  8. 김정진, 정용식, 김정곤, 이상욱, 김영훈. 2007b. 강우 강도에 따른 임하댐 및 안동댐 유입하천의 탁도 변화와 탁도유발물질의 광물학적 특성 연구. 한국광물학회지 20(3): 213-222
  9. 박정원, 이경락, 최재신, 김한순. 2005. 임하댐의 탁수 형성후 식물플랑크톤 군집 동태. 한국육수학회지 38(3): 429-434
  10. 박종근. 2005. 대청호의 수질 환경요인과 영양단계 평가. 한국육수학회지 38(3): 382-392
  11. 배대열, 양은찬, 정승현, 이재훈, 안광국. 2007. 대청호에서 종적 구배에 따른 영양 염류 및 엽록소의 역동성. 한국육수학회지 40(2): 285-292
  12. 사승환, T. Masusa and Y. Hosoi. 2004. 농업유역으로부터 유출되는 부유물질의 특징과 부영양화에 미치는 잠재적 영향 평가, 한국생물과학협회 학술발표대회 초록집 8: 32
  13. 안광국, 박선재, 최성모, 박종석. 2006. 안동호와 임하호에서 관측한 장기 수질자료의 비교 분석. 한국육수학회지 39(1):21-31
  14. 정세웅, 박재호. 2005. 대청호 유역의 수질평가를 위한 종합 수질지수의 적용. 한국육수학회지 21(5): 470-476
  15. 정세웅, 이흥수, 윤성완, 예 령, 이준호, 추창오. 2007. 홍수시 대청호 유역에 발생하는 탁수의 물리적 특성. 한국물환경학회지 23(6): 934-944
  16. 한국수자원공사. 2003. 다목적댐 운영 종합보고서
  17. An, K-G. and D.S. Kim. 2003. Response of lake water quality to nutrient inputs from various streams and in-lake fish farms. Water, Air, and Soil Pollution. 149: 27-49 https://doi.org/10.1023/A:1025602213674
  18. An, K.-G. and J.R. Jones. 2000. Temporal and spatial patterns in ionic salinity and suspended solids in a reservoir influenced by the Asian monsoon. Hydrobiogia 436: 179-189 https://doi.org/10.1023/A:1026578117878
  19. Duffy, P.D., J.D. Schreiber, D.C. McClurkin and L.L. McDowell. 1978. Aqueous and sediment-phase phosphorus yields from five southern pine watersheds. Journal of Environmental Quality 7: 45-50 https://doi.org/10.2134/jeq1978.7145
  20. Harper, D. 1992. Eutrophication of freshwaters. Chapman and Hall
  21. Hellawell, J.M. 1986. Biological indicator offreshwater pollution and environmental management. Elsevier Applied Science Publishers LTD p. 78-79
  22. Horne, A.J. and C.R. Goldman. 1994. Limnology 2nd edition. McGraw-Hill p. 592
  23. Kalff, J. 2002. Limnology. Prentice Hall. New Jersey, p. 148-153
  24. Kent, W.T., B.L. Kimmel and F.E. Payne. 2002. Reservoir limnology, Shingwang, p. 66-169
  25. Marzolf, G.R. 1981. Some aspects of zooplankton existence in surface water impoundments. Stenfan (ed). American Society of Civil Engineers, p. 1392-1399
  26. Pita, F.W. and N.J. Hyne. 1974. The depositional environment of zinc, lead and cadmium in reservoir sediments. Water Research 9: 701-706
  27. Schreiber, J.D. and D.L. Rausch. 1979. Suspended sedimentphosphorus elationships for the inflow and outflow of a flood detention reservoir. Journal of Environmental Quality 8: 510-514 https://doi.org/10.2134/jeq1979.84510x
  28. Shin, J.-K., S.-A Jeong, I.-H. Choi and S.-J. Hwang. 2004. Dynamics of turbid water in a Korean reservoir with selective withdrawal discharges. Korean Journal of Limnology 37: 423-430
  29. Sigler, J.W., T.C. Bjornn and F.H. Everst. 1984. Effects of chronic turbidity on density and growth of steelheads and coho salmon. Transactions of American Fisheries Society 113: 142-150 https://doi.org/10.1577/1548-8659(1984)113<142:EOCTOD>2.0.CO;2
  30. Vanoni, V.A. 1975. Sedimentation engineering (ed). ASCE manuals and reports on engineering practice No. 54. American Society of Civil Engineers