DOI QR코드

DOI QR Code

Antioxidant Activity of Solvent Fraction from Black Garlic

흑마늘 용매 분획물의 항산화 활성

  • Shin, Jung-Hye (Namhae Garlic Research Institute) ;
  • Lee, Hyun-Gi (Dept. of Food Science and Nutrition, Gyeongsang National University) ;
  • Kang, Min-Jung (Namhae Garlic Research Institute) ;
  • Lee, Soo-Jung (Dept. of Food Science and Nutrition, Gyeongsang National University) ;
  • Sung, Nak-Ju (Dept. of Food Science and Nutrition, Gyeongsang National University)
  • 신정혜 ((재)남해마늘연구소) ;
  • 이현지 (경상대학교 식품영양학과.농업생명과학연구원) ;
  • 강민정 ((재)남해마늘연구소) ;
  • 이수정 (경상대학교 식품영양학과.농업생명과학연구원) ;
  • 성낙주 (경상대학교 식품영양학과.농업생명과학연구원)
  • Received : 2010.02.16
  • Accepted : 2010.06.22
  • Published : 2010.07.31

Abstract

To confirm antioxidant activity of black garlic, methanol extract of black garlic was fractioned by hexane, chloroform, ethyl acetate, buthanol and water. Antioxidant activities of solvent fractions were assayed in 100, 250, 500 and $1,000\;{\mu}g/mL$ concentrations. The contents of total phenol and flavonoids were significantly higher 5.5~11.6 times in chloroform, ethyl acetate and hexane fraction than other fractions. Antioxidant activities of solvent fractions were increased by higher sample concentrations and their activities were significantly higher in chloroform and ethyl acetate fractions than others. DPPH radical scavenging activity was over 50% in $1,000\;{\mu}g/mL$ concentration, except butanol and water fraction. In the same concentration, reducing power was also significantly lower in butanol and water fraction. ABTS radical scavenging activity was higher in hexane, chloroform and ethyl acetate fractions and was over 70% at $1,000\;{\mu}g/mL$ concentration. In $1,000\;{\mu}g/mL$ concentration, the range of hydroxy radical scavenging activity was 50.27~81.02% and SOD-like ability was 26.73~47.64%. Antioxidant activity in linoleic acid reaction system was significantly higher when storage time was longer and sample concentration was higher in non-polar solvent fractions. Nitrite scavenging activity was relatively higher than antioxidant activity and the activity in $100\;{\mu}g/mL$ concentration was over than 50%, except butanol fraction.

흑마늘의 기능성을 분석하기 위하여 용매별 계통 분획물을 만들어 100, 250, 500 및 $1,000\;{\mu}g/mL$ 농도에서 항산화 활성을 측정하였다. 총 페놀 및 플라보노이드 화합물의 함량은 chloroform, ethyl acetate 및 hexane 분획물에서 유의적으로 높아 butanol, methanol 및 물 분획물에 비하여 5.5~11.6배 더 많았다. 흑마늘 계통 분획물의 항산화 활성은 시료의 첨가농도가 증가함에 따라 그 활성도 증가하였으며, chloroform과 ethyl acetate 분획물의 활성이 유의적으로 높았다. DPPH 라디칼 소거능은 $1,000\;{\mu}g/mL$ 농도에서는 butanol과 물 분획물을 제외한 모든 시료 모두에서 50% 이상의 활성을 나타내었다. ABTS 라디칼 소거능의 경우 hexane, chloroform, ethyl acetate 분획물에서 비교적 활성이 높아, $1,000\;{\mu}g/mL$ 농도에서는 70% 이상의 소거능을 보였다. $1,000\;{\mu}g/mL$ 농도에서 hydroxyl radical 소거능은 50.27~81.02%의 범위로 높은 반면 SOD 유사활성은 26.73~47.64%로 비교적 그 활성이 낮았다. Linoleic acid 반응계에서 항산화 활성을 측정한 결과 저장기간이 길수록, 시료의 첨가 농도가 높을수록 항산화 활성이 더 높았으며, 또 극성 용매보다는 비극성용매 분획물의 활성이 유의적으로 높았다. 아질산염 소거능의 경우 butanol 분획물을 제외한 모든 시료에서 비교적 그 활성이 높아 $100\;{\mu}g/mL$ 농도에서도 50% 이상의 소거능을 보였다.

Keywords

References

  1. Kim YP, Lee GW, Oh HI. 2006. Optimization of extraction conditions for garlic oleoresin and changes in the quality characteristics of oleoresin during storage. Korean J Food & Nutr 19: 219-226.
  2. Choi DJ, Lee SJ, Kang MJ, Cho HS, Sung NJ, Shin JH. 2008. Physicochemical characteristics of black garlic (Allium sativum L.). J Korean Soc Food Sci Nutr 37: 465-471. https://doi.org/10.3746/jkfn.2008.37.4.465
  3. Peralta EM, Hatate H, Kawabe D, Kuwahara R, Wakamatsu S, Yuki T. 2008. Improving antioxidant activity and nutritional components of Philippine salt-fermented shrimp paste through prolonged fermentation. Food Chem 111: 72-77. https://doi.org/10.1016/j.foodchem.2008.03.042
  4. Yilmaz Y, Toledo R. 2005. Antioxidant activity of watersoluble Maillard reaction products. Food Chem 93: 273-278. https://doi.org/10.1016/j.foodchem.2004.09.043
  5. Shin JH, Choi DJ, Lee SJ, Cha JY, Kim JG, Sung NJ. 2008. Changes of physicochemical components and antioxidant activity of garlic during its processing. J Life Sci 18: 1123-1131. https://doi.org/10.5352/JLS.2008.18.8.1123
  6. Jang EK, Seo JH, Lee SP. 2008. Physicological activity and antioxidative effects of aged black garlic (Allium sativum L.) extract. Korean J Food Sci Technol 40: 443-448.
  7. Shin JH, Choi DJ, Lee SJ, Cha JY, Sung NJ. 2008. Antioxidant activity of black garlic (Allium sativum L.). J Korean Soc Food Sci Nutr 37: 965-971. https://doi.org/10.3746/jkfn.2008.37.8.965
  8. Yang ST. 2007. Antioxidative activity of extracts of aged black garlic on oxidation of human low density lipoprotein. J Life Sci 17: 1330-1335. https://doi.org/10.5352/JLS.2007.17.10.1330
  9. Kang MJ, Lee SJ, Shin JH, Kang SK, Kim JG, Sung NJ. 2008. Effect of garlic with different processing on lipid metabolism in 1% cholesterol fed rats. J Korean Soc Food Sci Nutr 37: 162-169. https://doi.org/10.3746/jkfn.2008.37.2.162
  10. Gutfinger T. 1981. Polyphenols in olive oils. JAOCS 58: 966-967. https://doi.org/10.1007/BF02659771
  11. Moreno MIN, Isla MIN, Sampietro AR, Vattuone MA. 2000. Comparison of the free radical scavenging activity of propolis from several region of Argentina. J Enthnopharmacol 71: 109-114. https://doi.org/10.1016/S0378-8741(99)00189-0
  12. Blois MS. 1958. Antioxidant determination by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  13. Oyaizu M. 1986. Studies on products of browning reactions: antioxidative activities of products of browning reaction prepared from glucosamine. Jpn J Nutr 44: 307-315. https://doi.org/10.5264/eiyogakuzashi.44.307
  14. Re R, Pellegrini N, Pannala A, Yang M, Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26: 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  15. Gutteridge JM. 1984. Reactivity of hydroxyl and hydroxyl like radicals discriminated by release of thiobarbituric acid reactive material from deoxy sugars, nucleosides and benzoate. Biochem J 224: 761-767. https://doi.org/10.1042/bj2240761
  16. Marklund S, Marklund G. 1974. Involvement of superoxide anion radical in the oxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47: 468-474.
  17. Osawa T. 1981. A novel type of antioxidant isolated from leaf was of eucalyptus leaves. Agric Biol Chem 45: 735-739. https://doi.org/10.1271/bbb1961.45.735
  18. Kim EY, Baik IH, Kim JH, Kim SR, Rhyu MR. 2004. Screening of the antioxidant activity of some medicinal plants. Korean J Food Sci Technol 36: 333-338.
  19. Kim DS, Ahn BW, Yeum DM, Lee DW, Kim ST, Park YH. 1987. Degradation of carcinogenic nitrosamine formation factor by natural food components. Bull Korean Fish Soc 20: 463-468.
  20. Queiroz YS, Ishimoto EY, Bastos DHM, Sampaio GR, Torres EAFS. Garlic (Allium sativum L.) and ready-to-eat garlic products, in vitro antioxidant activity. Food Chem 115: 371-374. https://doi.org/10.1016/j.foodchem.2008.11.105
  21. Kim MK, Jin YS, Heo SI, Shim TH, Sa JH, Wang MH. 2006. Studies for component analysis and antioxidant effect, antimicrobial activity in Acanthopanax senticosus HARMS. Kor J Pharmacogn 37: 151-156.
  22. Jang MJ, Rhee J, Cho SH, Woo MH, Choi JH. 2006. A study on the antioxidative, anti-inflammatory and anti-thrombogenic effects of Zanthoxylum piperitum DC. extract. J Korean Soc Food Sci Nutr 35: 21-27. https://doi.org/10.3746/jkfn.2006.35.1.021
  23. Song JC, Park NK, Hur HS, Bang MH, Baek NI. 2000. Examination and isolation of natural antioxidants from Korean medicinal plants. Korean J Med Crop Sci 8: 94-101.
  24. Moreno FJ, Corzo-Martinez M, del Castillo MD, Villamiel M. 2006. Changes in antioxidant activity of dehydrated onion and garlic during storage. Food Res Int 39: 891-897. https://doi.org/10.1016/j.foodres.2006.03.012
  25. Lee SO, Kim MJ, Kim DG, Choi HJ. 2005. Antioxidative activities of temperature-stepwise water extracts from Inonotus obliquus. J Korean Soc Food Sci Nutr 34: 139-147. https://doi.org/10.3746/jkfn.2005.34.2.139
  26. Hochestein P, Atallah AS. 1988. The nature of oxidant and antioxidant systems in the inhibition of mutation and cancer. Mutat Res 202: 363-375. https://doi.org/10.1016/0027-5107(88)90198-4
  27. Manian R, Anusuya N, Siddhyraju P, Manian S. 2008. The antioxidant activity and free radical scavenging potential of two different solvent extracts of Camellia sinensis (L.) O. Kuntz, Ficus bengalensis L. and Ficus racemosa L. Food Chem 107: 1000-1007. https://doi.org/10.1016/j.foodchem.2007.09.008
  28. Na GM, Han HS, Ye SH, Kim HK. 2004. Extraction characteristics and antioxidative activity of Cassia tora L. extracts. Korean J Food Culture 19: 499-505.
  29. Devy C, Gautier R. 1990. New perspectives on the biochemistry of superoxide anion and the efficiency of superoxide dismutase. Biochem Pharmacol 39: 399-405. https://doi.org/10.1016/0006-2952(90)90043-K
  30. Lim JD, Yu CY, Kim MJ, Yun SJ, Lee SJ, Kim NY, Chung IM. 2004. Comparison of SOD activity and phenolic compound contents in various Korean medicinal plants. Korean J Med Crop Sci 12: 191-201.
  31. Lee JW, Bae YI, Shim KH. 2001. Biofunctional characteristics of the water soluble browning reaction products isolated from Korean red ginseng-Study on the antimutagenic and nitrite scavenging activities. J Ginseng Res 25: 118-121.
  32. Lawson LD. 1998. Garlic: a review of its medicinal effects and indicated active compound. In Phytomedicines of Europe: Chemistry and Biological Activity. Lawson LS, Bauer R, eds. ACS Symposium Series, 691. American Chemistry Society, Washington, DC, USA. p 176-209.

Cited by

  1. Black Onions Manufactured via the Browning Reaction and Antioxidant Effects of Their Water Extracts vol.18, pp.3, 2011, https://doi.org/10.11002/kjfp.2011.18.3.310
  2. The Physicochemical Characteristics and Antioxidant Properties of Commercial Nurungji Products in Korea vol.32, pp.5, 2016, https://doi.org/10.9724/kfcs.2016.32.5.575
  3. Antioxidant and Anticancer Effects of Water Extract from Pleurotus ostreatus vol.28, pp.1, 2015, https://doi.org/10.9799/ksfan.2015.28.1.060
  4. Biological Activities of Yellow Garlic Extract vol.44, pp.7, 2015, https://doi.org/10.3746/jkfn.2015.44.7.983
  5. Antimicrobial Activity of Psoralea corylifolia, Schisandra chinensis, and Spatholobus suberectus Extracts vol.45, pp.4, 2013, https://doi.org/10.9721/KJFST.2013.45.4.495
  6. Antioxidative Activity of the n-Hexane Fractions from Spatholobus suberectus (SS), Scutellsria barbata (SB), Psoralea corylifolia (PC), Curcuma zedoaria (CZ), Schisandra chinensis (SC), and Corydalis turtschaninovii (CT) vol.44, pp.4, 2012, https://doi.org/10.9721/KJFST.2012.44.4.493
  7. Physicochemical Properties, Biological Activity, Health Benefits, and General Limitations of Aged Black Garlic: A Review vol.22, pp.6, 2017, https://doi.org/10.3390/molecules22060919
  8. Establishment of Extraction Conditions for the Optimization of the Black Garlic Antioxidant Activity Using the Response Surface Methodology vol.19, pp.4, 2012, https://doi.org/10.11002/kjfp.2012.19.4.577
  9. Antioxidant and Antiobesity Activity of Solvent Fractions from Red Garlic vol.22, pp.7, 2012, https://doi.org/10.5352/JLS.2012.22.7.950
  10. The Effect of Black Garlic Extract on Lipid Metabolism in Restraint Stressed Rats vol.22, pp.11, 2012, https://doi.org/10.5352/JLS.2012.22.11.1529
  11. Effect of Polygala radix Hot Water Extract on Biological Activity in PC12 Cells vol.23, pp.8, 2013, https://doi.org/10.5352/JLS.2013.23.8.1041
  12. Analysis of Active Components of Giant Black Garlic vol.44, pp.11, 2015, https://doi.org/10.3746/jkfn.2015.44.11.1672
  13. Comparison of Volatile Flavor Compounds in Commercial Black Onion Extracts vol.21, pp.12, 2011, https://doi.org/10.5352/JLS.2011.21.12.1740
  14. Volatile Flavor Compounds in Commercial Black Garlic Extracts vol.41, pp.1, 2012, https://doi.org/10.3746/jkfn.2012.41.1.116
  15. Antioxidant Activity and Antimicrobial Effect for Foodborne Pathogens from Extract and Fractions of Sanguisorba officinalis L. vol.24, pp.4, 2016, https://doi.org/10.7783/KJMCS.2016.24.4.303
  16. Quality characteristics and antioxidant activity of drink prepared with black garlic and Oenanthe javanica DC vol.21, pp.2, 2014, https://doi.org/10.11002/kjfp.2014.21.2.193
  17. 흑마늘의 항산화, 항균 및 항혈전 활성 vol.42, pp.3, 2010, https://doi.org/10.4014/kjmb.1407.07002
  18. 매실 순차분획물의 용매별 항산화 활성 및 α-glucosidase 억제 효과 vol.29, pp.10, 2010, https://doi.org/10.5352/jls.2019.29.10.1111
  19. 발효흑마늘 추출물이 흰쥐의 지질대사 및 간기능 개선에 미치는 영향 vol.33, pp.1, 2010, https://doi.org/10.9799/ksfan.2020.33.1.017
  20. 서산육쪽·코끼리마늘의 흑마늘 숙성 시기별 생리활성 분석 vol.29, pp.5, 2010, https://doi.org/10.5322/jesi.2020.29.5.469