DOI QR코드

DOI QR Code

Free Radical-scavenging Activities of Amaranth (Amaranthus spp. L.) Seed Extracts

아마란스 종자 추출물의 라디칼 저해활성

  • Chung, Kang-Hyun (Department of Food Science and Technology, Seoul national University of Science & Technology) ;
  • Jo, Hyeon-Ju (Department of Food Science and Technology, Seoul national University of Science & Technology) ;
  • Yoon, Jin-A (Department of Food & Nutrition, Baewha Women's University) ;
  • Song, Byeong Chun (Division of food Bioscience, Konkuk University) ;
  • An, Jeung Hee (Division of food Bioscience, Konkuk University)
  • 조현주 (서울과학기술대학교 식품공학과) ;
  • 정강현 (서울과학기술대학교 식품공학과) ;
  • 윤진아 (배화여자대학교 식품영양과) ;
  • 송병춘 (건국대학교 식품생명과학부) ;
  • 안정희 (건국대학교 식품생명과학부)
  • Received : 2014.03.06
  • Accepted : 2014.04.16
  • Published : 2014.05.31

Abstract

This study investigated the antioxidant activities of Amaranth (Amaranthus spp. L.) seed extracts. Methanol and hot water extracts of the seeds were evaluated for their total polyphenol, flavonoid, and tannin content, antioxidant activities, and protective effects against oxidative stress on L-132 cells. The hot water extracts showed higher total phenol (4.23 mg GAE/g) and tannin (0.511 mg TAE/g) content, while the methanol extracts showed higher flavonoid content (1.53 mg CE/g). The methanol extracts performed better than the water extracts for DPPH radical-scavenging activity, while the water extracts performed better for ABTS radical-scavenging activity and SOD-like activity. With L-132 cells, the water extracts showed strong protective effects against oxidative stress in a dose dependent manner with an effect three-fold higher than that of the methanol extracts at a concentration of $500{\mu}g/mL$. A higher inhibition activity of nitric oxide in RAW 264.7 cells was observed with the water extracts than with the methanol extracts at a concentration of $250{\mu}g/mL$. In summary, the water extracts showed the highest total polyphenol and tannin content and a more powerful protective effect against oxidative stress and inhibition effect of NO. Our results suggest that amaranth seeds may be useful as natural antioxidant compounds.

본 연구는 아마란스 종자 물 추출물과 메탄올 추출물의 폴리페놀과 플라보노이드 함량 측정과 DPPH와 ABTS 라디칼 소거활성, SOD 유사활성을 측정하였으며 $H_2O_2$에 의한 산화적 스트레스에서의 세포 보호효과와 산화질소 생성억제활성을 분석하여 새로운 식물유래 라디칼 소거활성 물질을 개발하기 위하여 시행하였다. 물 추출물의 총 폴리페놀 함량은 4.23 mg GAE/100 g이고 탄닌 함량은 0.511 mg TAE/g으로 메탄올 추출물보다 높았다. DPPH 라디칼 소거활성은 $50{\mu}g/mL$의 농도에서 메탄올 추출물 추출물(5.8%)이 가장 좋았으며 물 추출물의 활성은 $250{\mu}g/mL$의 농도에도 활성을 보이지 않았다. ABTS 라디칼 소거활성에서 메탄올 추출물은 $250{\mu}g/mL$의 농도에서 활성이 11.1%로 가장 좋았으며 물 추출물에서는 $50{\mu}g/mL$에서 11.8%의 활성을 나타내었다. SOD 유사활성에서 메탄올 추출물은 $100{\mu}g/mL$ 농도에서 14.04%으로 가장 높은 활성이 나타났으며 물 추출물은 $50{\mu}g/mL$ 농도에서 18.34%의 활성이 나타났다. 아마란스 종자 물 추출물의 경우 산화적 스트레스($H_2O_2$)에 의한 세포 보호 효과를 갖는 것을 확인하였다. 세포내 NO 생성 억제활성을 조사한 결과에서는 $250{\mu}g/mL$의 농도에서 물 추출물이 51.9%의 가장 높은 억제활성을 보여주었다. 본 연구의 결과, 폴리페놀과 탄닌의 함량이 높은 물 추출물에서 라디컬 소거능은 낮았으나 산화적 손상에 대한 보호 효과와 NO생성억제능이 높아 강력한 항산화제로써의 활성을 보여주었다. 이러한 결과로 보아 아마란스 종자의 새로운 항산화소재로서 개발가능성을 보여주었다.

Keywords

Acknowledgement

Supported by : 서울과학기술대학교

References

  1. Alvarez-Jubete L, Wijngaard H, Arendt EK, Gallagher E. 2010. Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa buckwheat and wheat as affected by sprouting and baking. Food Chem. 119: 770-778. https://doi.org/10.1016/j.foodchem.2009.07.032
  2. AOAC. 1990. Official Methods Analysis. 15th ed. Association of official analytical chemists, Washington, DC, USA.
  3. Arnao MB, Cano A, Acosta M. 2001. The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chem. 73: 239-244. https://doi.org/10.1016/S0308-8146(00)00324-1
  4. Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  5. Caselato-Sousa VM, Amaya-Farfan J. 2012. State of knowledge on amaranth grain: a comprehensive review. J Food Sci. 77:93-104. https://doi.org/10.1111/j.1750-3841.2012.02645.x
  6. Choi HS. 2011. Effect of adding amaranth powder on noodle quality, J Korean J Food & Nutr. 24: 664-669. https://doi.org/10.9799/ksfan.2011.24.4.664
  7. de Zwart LL, Meerman JH, Commandeur JN, Vermeulen NP. 1999. Biomarkers of free radical damage applications in experimental animals and in humans. Free Radic. Biol. Med. 26: 202-226. https://doi.org/10.1016/S0891-5849(98)00196-8
  8. Fang FC. 2004. Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat. Rev. Microbiol. 2: 820-832. https://doi.org/10.1038/nrmicro1004
  9. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR, 1982 Analysis of nitrate, nitrite, and [$^{15}N$]nitrateinbiologicalfluids. Anal. Biochem. 126: 131-138. https://doi.org/10.1016/0003-2697(82)90118-X
  10. Han JH, Moon HK, Chung SK, Kang WW. 2013. Comparison of antioxidant activities of radish bud (Raphanus sativus L.) according to extraction solvents and sprouting period. J. Korean Soc. Food. Sci. Nutr. 42: 1767-1775. https://doi.org/10.3746/jkfn.2013.42.11.1767
  11. Huang D, Ou B, Prior RL. 2005. The chemistry behind antioxidant capacity assays. J. Agric. Food. Chem. 53: 1841-1856. https://doi.org/10.1021/jf030723c
  12. Jeon SM, Kim SY, Kim IH, Go JS, Kim HR, Jeong JY, Lee HY, Park DS. 2013. Antioxidant activities of processed deoduck (Codonopsis lanceolata) Extracts. J. Korean Soc. Food Sci. Nutr. 42: 924-932. https://doi.org/10.3746/jkfn.2013.42.6.924
  13. Kang KM, Lee SH. 2013. Effects of extraction methods on the antioxidative activity of Artemisia sp. J. Korean Soc. Food Sci. Nutr. 42: 1249-1254. https://doi.org/10.3746/jkfn.2013.42.8.1249
  14. Keum YS, Park KK, Lee JM, Chun KS, Park JH, Lee SK, Kwon H, Surh YJ. 2000. Antioxidant and anti-tumor promoting activities of the methanol extract of heat-processed ginseng. Cancer Lett. 150: 41-48. https://doi.org/10.1016/S0304-3835(99)00369-9
  15. Kim HS, Kang JS. 2008. Preparation and characteristics of bread by medicinal herb composites with immunostimulating activity. J. Korean Soc. Food Sci. Nutr. 37: 109-116. https://doi.org/10.3746/jkfn.2008.37.1.109
  16. Kim HW, Murakami A, Nakamura Y, Ohigashi H, 2002. Screening of edible Japanese plants for suppressive effects on phorbol ester-induced superoxide generation in differentiated HL-60 cells and AS52 cells. Cancer Lett. 176: 7-16. https://doi.org/10.1016/S0304-3835(01)00735-2
  17. Kim HY , Ko JY, Song SB, Kim JI , Seo HI , Lee JS, Kwak DY, Jung TW, Kim KY, Oh IS, Jeong HS, Woo KS. 2012. Antioxidant activities of solvent fractions from methanolic extract of cockscome (Celosia cristata L.) Flowers. J. Korean Soc. Food Sci. Nutr. 41: 1502-1507. https://doi.org/10.3746/jkfn.2012.41.11.1502
  18. Kim JS, Ryoo HJ. 2002. Application to the biscuits manufacture of processed amaranth seeds, J. Korean Soc. Food Sci. Nutr. 15: 321-325.
  19. Kim KH, Kim DM, Byun MW, Yun YS, Yook HS. 2013a. Antioxidant activity of panax ginseng flower-buds fermented with various microorganisms. J. Korean Soc. Food Sci. Nutr. 42: 663-669. https://doi.org/10.3746/jkfn.2013.42.5.663
  20. Kim PJ, Yun HJ, Heo SK, Kim KA, Kim DW, Kim JE, Park SD. 2009. Anti-inflammatory Effect of Bodusan. Kor. J. Herbology. 24: 49-56.
  21. Kim MJ, Choi JH, Kwon SH, Kim HD, Bang MH, Yang SA. 2013b. Characteristics of fermented dropwort extract and vinegar using fermented dropwort extract and its protective effects on oxidative damage in rat glioma C6 cells. Korean J. Food Sci. Technol. 45: 350-355. https://doi.org/10.9721/KJFST.2013.45.3.350
  22. Kim SH, Choi HJ, Oh HT, Chung MJ, Cui CB, Ham SS. 2008. Cytoprotective effect by antioxidant activity of Codonopsis lanceolata and Platycodon grandiflorum ethyl acetate fraction in human HepG2 cells. Korean J. Food Sci. Techenol. 40: 696-701.
  23. Kim SM, Cho YS, Sung SK. 2001. The antioxidant ability and nitrite scavenging ability of plant extracts. Korean J. Food Sci. Technol. 33: 626-632.
  24. Kim YC, Hong HD, Rho JH, Cho CW, Rhee YK, Yim JH. 2007. Changes of phenolic acid contents and radical scavenging activities of ginseng according to steaming times. J. Ginseng Res. 31: 230-236. https://doi.org/10.5142/JGR.2007.31.4.230
  25. Lee JH, Kim KJ, Lee J, Lee ST, Ryu SN. 1996a. Functional ingredient and their some variance in amaranth and quinoa. Korean J. Crop Sci. 41: 145-165.
  26. Lee JH, Moon HI, Lee JI, Kang CW, Lee ST. 1996b. Isolation and identification of squalene and antineoplastic activity of its residue extract in Amaranth. Korean J. Crop Sci. 41: 450-455.
  27. Lee NY, 2013, Antioxidant effect and tyrosinase inhibition activity of seaweeds ethanol extracts. J. Korean Soc. Food Sci. Nutr. 42: 1893-1898. https://doi.org/10.3746/jkfn.2013.42.12.1893
  28. Lee YM, Bae JH, Jung HY, Kim JH, Park DS, 2011. Antioxidant activity in water and methanol extracts from korean edible wild plants. J. Korean Soc. Food Sci. Nutr. 40: 29-36. https://doi.org/10.3746/jkfn.2011.40.1.029
  29. Lodovici M, Guglielmi F, Meoni M, Dolara P. 2001. Effect of natural henolic acids on DNA oxidation in vitro. Food Chem. Toxicol. 39: 1205-1210. https://doi.org/10.1016/S0278-6915(01)00067-9
  30. Marklund S, Marklund G. 1974. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 47: 469-474. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  31. Middleton E, Kandaswami C. 1994. Potential health-promoting properties of citrus flavonoids. Food Technol. 48: 115-119.
  32. Murakami A, Nakashima M, Koshiba T, Maoka T, Nishino H, Yano M, Sumida T, Kim OK, Koshimizu K, Ohigashi H. 2000. Modifying effects of carotenoids on superoxide and nitric oxide generation from stimulated leukocytes. Cancer Lett. 149: 115-123. https://doi.org/10.1016/S0304-3835(99)00351-1
  33. Park SH, Cho KH, Shon YH, Lim JK, Nam KS, 2001, Testing of cancer chemopreventive potential of prunella vulgaris L. aquaacupuncture solution using biochemical markers of carcinogenesis. Kor. J. Pharmacogn. 32: 163-167.
  34. Park YJ, Kim HJ, Heo BG. 2007. An in vitro study on total phenol content, electron donor capacity and their cytotoxicity effects of extracts of four different edible flowers. Flower Res. J. 15: 4145.
  35. Qureshi AA, Lehmann JW, Peterson DM. 1996. Amaranth and its oil inhibit cholesterol biosynthesis in 6-week-old female chickens. J. Nutr. 126:1972-1978.
  36. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26: 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  37. Seo JH, Jeong YJ, Shin SR, Kim KS. 2000. Effects of tannin from astringent persimmons in alcohol fermentation for persimmon vinegers. J. Korean Soc. Food Sci. Nutr. 29: 407-411.
  38. Seo YH, Kim IJ, Yie AS, Min HK. 1999. Electron donating ability and contents of phenolic compounds, tocopherols and carotenoids in waxy corn (Zea mays L.). Korean J. Food Sci. Technol. 31: 581-585.
  39. Singleton VL, Orthofer R, Lamuela-Raventos RM. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 299: 152-178. https://doi.org/10.1016/S0076-6879(99)99017-1
  40. Singleton VL, Rossi JA. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16: 144-158.
  41. Woo JH, Shin SL, Lee CH. 2010. Antioxidant effects of ethanol extracts from flower species of compositae plant. J. Korean Soc. Food Sci. Nutr. 39: 159-164. https://doi.org/10.3746/jkfn.2010.39.2.159
  42. Yun YS, Jeong KS. 2012. Polyphenol contents of rumex crispus root extract with hot water and its antioxidative effect. J. Environ. Sci. 21: 1265-1274.
  43. Zhishen J, Mengcheng T, Jianming W. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 64: 555-559. https://doi.org/10.1016/S0308-8146(98)00102-2

Cited by

  1. 금매와 매화 잎 추출물의 프리라디칼 억제 활성 및 항암 효과 vol.44, pp.8, 2015, https://doi.org/10.3746/jkfn.2015.44.8.1137
  2. 맥문동, 오미자 및 인삼 혼합추출물의 이화학적 특성 및 생리활성 vol.24, pp.3, 2014, https://doi.org/10.11002/kjfp.2017.24.3.431
  3. 밀가루를 대체한 다양한 종류의 쌀가루 머핀의 품질특성 및 항산화 효과 vol.49, pp.5, 2014, https://doi.org/10.9721/kjfst.2017.49.5.567
  4. 건조방법에 따른 적겨자잎의 이화학적 성분 및 항산화효과 비교 vol.28, pp.4, 2014, https://doi.org/10.7856/kjcls.2017.28.4.515
  5. 당 침지액 농도에 따른 건조 둥근 마의 품질 특성 및 항산화 효과 vol.30, pp.6, 2014, https://doi.org/10.9799/ksfan.2017.30.6.1176
  6. Deodorization Effects and Antibacterial Activity of Codonopsis lanceolata Extract vol.17, pp.2, 2014, https://doi.org/10.20402/ajbc.2019.0288
  7. 삼채잎 향기 성분 분석과 항산화 및 항염 효과 연구 vol.38, pp.1, 2021, https://doi.org/10.12925/jkocs.2021.38.1.263