DOI QR코드

DOI QR Code

Production and utilization of biochar: A review

  • Cha, Jin Sun (School of Environmental Engineering, University of Seoul) ;
  • Park, Sung Hoon (Department of Environmental Engineering, Sunchon National University) ;
  • Jung, Sang-Chul (Department of Environmental Engineering, Sunchon National University) ;
  • Ryu, Changkook (School of Mechanical Engineering, Sungkyunkwan University) ;
  • Jeon, Jong-Ki (Department of Chemical Engineering, Kongju National University) ;
  • Shin, Min-Chul (Korea Testing Laboratory) ;
  • Park, Young-Kwon (School of Environmental Engineering, University of Seoul)
  • Received : 2016.04.20
  • Accepted : 2016.06.06
  • Published : 2016.08.25

Abstract

Biochar produced during the thermochemical decomposition of biomass not only reduces the amount of carbon emitted into the atmosphere, but it is also an environment-friendly replacement for activated carbon and other carbon materials. In this review paper, researches on biochar are discussed in terms of production method and application. Different processes for biochar production, such as pyrolysis, gasification, hydrothermal carbonization, etc., are compared. Physical and chemical activation methods used to improve the physicochemical properties of biochar and their effects are also compared. Various environmental application fields of biochar including adsorption (for water pollutants and for air pollutants), catalysis (for syngas upgrading, for biodiesel production, and for air pollutant treatment), and soil conditioning are discussed. Recent research trend of biochar in other applications, such as fuel cell, supercapacitor, and hydrogen storage, is also reviewed.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. Q. Zhang, J. Chang, T. Wang, Y. Xu, Energy Convers. Manage. 48 (2007) 87. https://doi.org/10.1016/j.enconman.2006.05.010
  2. M. Tripathi, J.N. Sahu, P. Ganesan, Renew. Sustain. Energy Rev. 55 (2016) 467. https://doi.org/10.1016/j.rser.2015.10.122
  3. C.H. Ko, S.H. Park, J.K. Jeon, D.J. Suh, K.E. Jeong, Y.K. Park, Korean J. Chem. Eng. 29 (2012) 1657. https://doi.org/10.1007/s11814-012-0199-5
  4. S.Y. No, Renew. Sust. Energ. Rev. 40 (2014) 1108. https://doi.org/10.1016/j.rser.2014.07.127
  5. L. Zhang, R. Liu, R. Yin, Y. Mei, Renew. Sust. Energ. Rev. 24 (2013) 66. https://doi.org/10.1016/j.rser.2013.03.027
  6. N. Abdoulmoumine, S. Adhikari, A. Kulkarni, S. Chattanathan, Appl. Energy 155 (2015) 294. https://doi.org/10.1016/j.apenergy.2015.05.095
  7. Y. Richardson, J. Blin, A. Julbe, Prog. Energy Combust. Sci. 38 (2012) 765. https://doi.org/10.1016/j.pecs.2011.12.001
  8. J. Lehmann, S. Joseph, Biochar for Environmental Management: An Introduction, Biochar for Environmental Management Science and Technology, Earthscans, 2009p. 1.
  9. N. Liu, A.B. Charrua, C.H. Weng, X. Yuan, F. Ding, Bioresour. Technol. 198 (2015) 55. https://doi.org/10.1016/j.biortech.2015.08.129
  10. M.H. Duku, S. Gu, E.B. Hagan, Renew. Sust. Energ. Rev. 15 (2011) 3539. https://doi.org/10.1016/j.rser.2011.05.010
  11. H.S. Kambo, A. Dutta, Renew. Sust. Energ. Rev. 45 (2015) 359. https://doi.org/10.1016/j.rser.2015.01.050
  12. M. Ahmad, A.U. Rajapaksha, J.E. Lim, M. Zhang, N. Bolan, D. Mohan, M. Vithanage, S.S. Lee, Y.S. Ok, Chemosphere 99 (2014) 19. https://doi.org/10.1016/j.chemosphere.2013.10.071
  13. D. Mohan, A. Sarswat, Y.S. Ok, C.U, P. Jr., Bioresour. Technol. 160 (2014) 191. https://doi.org/10.1016/j.biortech.2014.01.120
  14. Y. Shen, Renew. Sust. Energ. Rev. 43 (2015) 281. https://doi.org/10.1016/j.rser.2014.11.061
  15. L.J. Konwar, J. Boro, D. Deka, Renew. Sust. Energ. Rev. 29 (2014) 546. https://doi.org/10.1016/j.rser.2013.09.003
  16. A.H. Lone, G.R. Najar, M.A. Ganie, J.A. Sofi, A.L.I. Tahir, Pedosphere 25 (2015) 639. https://doi.org/10.1016/S1002-0160(15)30045-X
  17. J. Yu, Y. Zhao, Y. Li, J. Power Sources 270 (2014) 312. https://doi.org/10.1016/j.jpowsour.2014.07.125
  18. A. Elleuch, A. Boussetta, J. Yu, K. Halouani, Y. Li, Int. J. Hydrog. Energy 38 (2013) 16590. https://doi.org/10.1016/j.ijhydene.2013.08.090
  19. R.K. Gupta, M. Dubey, P. Kharel, Z. Gu, Q.H. Fan, J. Power Sources 274 (2015) 1300. https://doi.org/10.1016/j.jpowsour.2014.10.169
  20. J. Jiang, L. Zhang, X. Wang, N. Holm, K. Rajagopalan, F. Chen, S. Ma, Electrochim. Acta 113 (2013) 481. https://doi.org/10.1016/j.electacta.2013.09.121
  21. M. Inyang, E. Dickenson, Chemosphere 134 (2015) 232. https://doi.org/10.1016/j.chemosphere.2015.03.072
  22. X. Tan, Y. Liu, G. Zeng, X. Wang, X. Hu, Y. Gu, Z. Yang, Chemosphere 125 (2015) 70. https://doi.org/10.1016/j.chemosphere.2014.12.058
  23. S. Gul, J.K. Whalen, B.W. Thomas, V. Sachdeva, H. Deng, Agric. Ecosyst. Environ. 206 (2015) 46. https://doi.org/10.1016/j.agee.2015.03.015
  24. J. Lehmann, J. Gaunt, M. Rondon, Mitig. Adapt. Strateg. Glob. Change 11 (2006) 403. https://doi.org/10.1007/s11027-005-9006-5
  25. L. Beesley, E.M. Jimenez, J.L.G. Eyles, E. Harris, B. LRobinson, T. Sizmur, Environ. Pollut. 159 (2011) 3269. https://doi.org/10.1016/j.envpol.2011.07.023
  26. S. Jeffery, F.G.A. Verheijen, M. van der Velde, A.C. Bastos, Agric. Ecosyst. Environ. 144 (2011) 175. https://doi.org/10.1016/j.agee.2011.08.015
  27. J. Lehmann, M.C. Rillig, J. Thies, C.A. Masiello, W.C. Hockaday, D. Crowley, Soil Biol. Biochem. 43 (2011) 1812. https://doi.org/10.1016/j.soilbio.2011.04.022
  28. E.H. Lee, R. Park, H. Kim, S.H. Park, S.C. Jung, J.K. Jeon, S.C. Kim, Y.K. Park, J. Ind. Eng. Chem. 37 (2016) 18. https://doi.org/10.1016/j.jiec.2016.03.019
  29. T.U. Han, Y.M. Kim, C. Watanabe, N. Teramae, Y.K. Park, S. Kim, Y. Lee, J. Ind. Eng. Chem. 32 (2016) 345.
  30. A. Heidari, R. Stahl, H. Younesi, A. Rashidi, N. Troeger, A.A. Ghoreyshi, J. Ind. Eng. Chem. 20 (2014) 2594. https://doi.org/10.1016/j.jiec.2013.10.046
  31. H. Shafaghat, P.S. Rezaei, W.M.A.W. Daud, J. Ind. Eng. Chem. 35 (2016) 268. https://doi.org/10.1016/j.jiec.2016.01.001
  32. M. Inguanzo, A. Dominguez, J.A. Menendez, C.G. Blanco, J.J. Pis, J. Anal. Appl. Pyrolysis 63 (2001) 209.
  33. A. Demirbas, J. Anal. Appl. Pyrolysis 72 (2004) 243. https://doi.org/10.1016/j.jaap.2004.07.003
  34. G. Chen, J. Andries, Z. Luo, H. Spliethoff, Energy Convers. Manage. 44 (2003) 1875. https://doi.org/10.1016/S0196-8904(02)00188-7
  35. A.I. Mohammad, A.E. Abdulrasoul, H. Ahmed, N. Mahmoud, U.R.A. Adel, Bioresour. Technol. 131 (2013) 374. https://doi.org/10.1016/j.biortech.2012.12.165
  36. J. Zhang, J. Liu, R. Liu, Bioresour. Technol. 176 (2015) 288. https://doi.org/10.1016/j.biortech.2014.11.011
  37. Y. Lee, P.R.B. Eum, C. Ryu, Y.K. Park, J. Jung, S. Hyun, Bioresour. Technol. 130 (2013) 345. https://doi.org/10.1016/j.biortech.2012.12.012
  38. M. Ayllon, M. Aznar, J.L. Sanchez, G. Gea, J. Arauzo, Chem. Eng. J. 121 (2006) 85. https://doi.org/10.1016/j.cej.2006.04.013
  39. M. Inguanzo, J.A. Menendez, E. Fuente, J.J. Pis, J. Anal. Appl. Pyrolysis 58-59 (2001) 943. https://doi.org/10.1016/S0165-2370(00)00143-1
  40. Z.A. Abu El-Rub, E.A. Bramer, G. Brem, Fuel 87 (2008) 2243. https://doi.org/10.1016/j.fuel.2008.01.004
  41. M.E. Boucher, Biomass Bioenerg. 19 (2000) 351. https://doi.org/10.1016/S0961-9534(00)00044-1
  42. A.V. Bridgwater, Research in Thermochemical Biomass Conversion, Elsevier Science Publishers, London, 1991.
  43. G.Q. Lu, J.C.F. Low, C.Y. Liu, A.C. Lua, Fuel 74 (1995) 344. https://doi.org/10.1016/0016-2361(95)93465-P
  44. T.J. Bandosz, K. Block, Appl. Catal. B: Environ. 67 (2006) 77. https://doi.org/10.1016/j.apcatb.2006.04.006
  45. Y.W. Lee, J.J. Park, C. Ryu, K.S. Gang, W. Yang, Y.K. Park, J. Jung, S.H. Hyun, Bioresour. Technol. 148 (2013) 196. https://doi.org/10.1016/j.biortech.2013.08.135
  46. C.E. Brewer, K. Schmidt-Rohr, J.A. Satrio, R.C. Brown, Environ. Prog. Sustain. Energy 28 (2009) 386. https://doi.org/10.1002/ep.10378
  47. L.E. Taba, M.F. Irfan, W.A.M.W. Daud, M.H. Chakrabarti, Renew. Sust. Energ. Rev. 16 (2012) 5584. https://doi.org/10.1016/j.rser.2012.06.015
  48. A. Gomez-Barea, P. Ollero, B. Leckner, Fuel 103 (2013) 42. https://doi.org/10.1016/j.fuel.2011.04.042
  49. H.L. Tay, S. Kajitani, S. Zhang, C.Z. Li, Fuel 103 (2013) 22. https://doi.org/10.1016/j.fuel.2011.02.044
  50. S. Roman, J.M.V. Nabais, C. Laginhas, B. Ledesma, J.F. Gonzalez, Fuel Process. Technol. 103 (2012) 78. https://doi.org/10.1016/j.fuproc.2011.11.009
  51. L.P. Xiao, Z.J. Shi, F. Xu, R.C. Sun, Bioresour. Technol. 118 (2012) 619. https://doi.org/10.1016/j.biortech.2012.05.060
  52. Y.H. Chana, S. Yusupa, A.T. Quitainb, Y. Uemura, M. Sasaki, J. Supercrit. Fluids 95 (2014) 407. https://doi.org/10.1016/j.supflu.2014.10.014
  53. A. Kruse, J. Supercrit. Fluids 47 (2009) 391. https://doi.org/10.1016/j.supflu.2008.10.009
  54. E. Sabio, A. Alvarez-Murillo, S. Roman, B. Ledesma, Waste Manage. 47 (2016) 122. https://doi.org/10.1016/j.wasman.2015.04.016
  55. M.J. Antal Jr., K. Mochidzuki, L.S. Paredes, Ind. Eng. Chem. Res. 42 (2003) 3690. https://doi.org/10.1021/ie0301839
  56. T. Nunoura, S.R. Wade, J.P. Bourke, M.J. Antal Jr., Ind. Eng. Chem. Res. 45 (2006) 585. https://doi.org/10.1021/ie050854y
  57. S.R. Wade, T. Nunoura, M.J. Antal, Ind. Eng. Chem. Res. 45 (2006) 3512. https://doi.org/10.1021/ie051374+
  58. W.H. Chen, Y.Q. Zhuang, S.H. Liu, T.T. Juang, C.M. Ysai, Bioresour. Technol. 199 (2016) 367. https://doi.org/10.1016/j.biortech.2015.08.066
  59. V. Benavente, A. Fullana, Biomass Bioenerg. 73 (2015) 186. https://doi.org/10.1016/j.biombioe.2014.12.020
  60. B.S. Chioua, D.V. Medina, C.B. Sainz, A.P. Klamczynski, R.J.A. Bustillos, R.R. Milczarek, W.X. Du, G.M. Glenn, W.J. Orts, Ind. Crop. Prod. 86 (2016) 40. https://doi.org/10.1016/j.indcrop.2016.03.030
  61. M.N. Nimlos, E. Brooking, M.J. Looker, R.J. Evans, Prepr. Pap. Am. Chem. Soc. Div. Fuel Chem. 48 (2003) 590.
  62. S. Meyer, B. Glaser, P. Quicker, Environ. Sci. Technol. 22 (2011) 9473.
  63. S.H. Jung, J.S. Kim, J. Anal. Appl. Pyrolysis 107 (2014) 116. https://doi.org/10.1016/j.jaap.2014.02.011
  64. S.M. Manocha, H. Patel, L.M. Manocha, Carbon Lett. 11 (2010) 201. https://doi.org/10.5714/CL.2010.11.3.201
  65. D. Agarwal, D. Lal, V.S. Tripathi, G.N. Mathur, Carbon Lett. 4 (2003) 126.
  66. T.S. Hui, M.A.A. Zaini, Carbon Lett. 16 (2015) 275. https://doi.org/10.5714/CL.2015.16.4.275
  67. J.S. Cha, J.C. Choi, J.H. Ko, Y.K. Park, S.H. Park, K.E. Jeong, S.S. Kim, J.K. Jeon, Chem. Eng. J. 156 (2010) 321. https://doi.org/10.1016/j.cej.2009.10.027
  68. B. Shen, J. Chen, S.Y.G. Li, Fuel 156 (2015) 47. https://doi.org/10.1016/j.fuel.2015.04.027
  69. J.R. Kastner, J. Miller, P. Kolar, K.C. Das, Chemosphere 75 (2009) 739. https://doi.org/10.1016/j.chemosphere.2009.01.035
  70. J.F. Gonzalez, S. Roman, J.M. Encinar, G. Martinez, J. Anal. Appl. Pyrolysis 85 (2009) 134. https://doi.org/10.1016/j.jaap.2008.11.035
  71. T.Y. Shim, J.S. Yoo, C. Ryu, Y.K. Park, J. Jung, Bioresour. Technol. 197 (2015) 85. https://doi.org/10.1016/j.biortech.2015.08.055
  72. R. Azargohar, A.K. Dalai, Microporous Mesoporous Mater. 110 (2008) 413. https://doi.org/10.1016/j.micromeso.2007.06.047
  73. J.M.V. Nabais, P. Nunes, P.J.M. Carrott, M.M.L.R. Carrott, A.M. Garcia, M.A.D. Diez, Fuel Process. Technol. 89 (2008) 262. https://doi.org/10.1016/j.fuproc.2007.11.030
  74. C.A. Toles, W.E. Marshall, L.H. Wartelle, A. McAloon, Bioresour. Technol. 75 (2000) 197. https://doi.org/10.1016/S0960-8524(00)00058-4
  75. A. Ros, M.A.L. Rodenas, E. Fuente, M.A.M. Moran, M.J. Martin, A.L. Solano, Chemosphere 65 (2006) 132. https://doi.org/10.1016/j.chemosphere.2006.02.017
  76. X. Zhang, S.H. Zhang, H.P. Yang, Y. Feng, Y.Q. Chen, X.H. Wang, H.P. Chen, Chem. Eng. J. 257 (2014) 20. https://doi.org/10.1016/j.cej.2014.07.024
  77. T.Y. Zhang, W.P. Walawender, L.T. Fan, M.H. Fan, D. Daugaardb, R.C. Brown, Chem. Eng. J. 105 (2004) 53. https://doi.org/10.1016/j.cej.2004.06.011
  78. S.H. Guo, J.H. Peng, W. Li, K.B. Yang, L. Zhang, S.M. Zhang, H. Xia, Appl. Surf. Sci. 255 (2009) 8443. https://doi.org/10.1016/j.apsusc.2009.05.150
  79. J.R. Kastner, J. Miller, K.C. Das, J. Hazard. Mater. 164 (2009) 1420. https://doi.org/10.1016/j.jhazmat.2008.09.051
  80. D. Jimenez-Cordero, F. Heras, N. Alonso-Morales, M.A. Gilarranz, J.J. Rodriguez, Fuel Process. Technol. 139 (2015) 42. https://doi.org/10.1016/j.fuproc.2015.08.016
  81. F.R. Reinoso, M.M. Sabio, M.T. Gonzalez, Carbon 33 (1995) 15. https://doi.org/10.1016/0008-6223(94)00100-E
  82. M.C. Ncibi, V.J. Rose, B. Mahjoub, C. Jean-Marius, J. Lambert, J.J. Ehrhardt, Y. Bercion, M. Seffen, S. Gaspard, J. Hazard. Mater. 165 (2009) 204.
  83. T. Tay, S. Ucar, S. Karagoz, J. Hazard. Mater. 165 (2009) 481. https://doi.org/10.1016/j.jhazmat.2008.10.011
  84. F.C. Wu, R.L. Tseng, R.S. Juang, Sep. Purif. Technol. 47 (2005) 10. https://doi.org/10.1016/j.seppur.2005.03.013
  85. K.Y. Foo, B.H. Hameed, Microporous Mesoporous Mater. 148 (2012) 191. https://doi.org/10.1016/j.micromeso.2011.08.005
  86. J.Y. Park, I. Hung, Z.H. Gan, O.J. Rojas, K.H. Lim, S.K. Park, Bioresour. Technol. 149 (2013) 383. https://doi.org/10.1016/j.biortech.2013.09.085
  87. J. Hayashi, T. Horikawa, I. Takeda, K. Muroyama, F.N. Ani, Carbon 40 (2002) 2381. https://doi.org/10.1016/S0008-6223(02)00118-5
  88. D. Angin, E. Altintig, T.E. Kose, Bioresour. Technol. 148 (2013) 542. https://doi.org/10.1016/j.biortech.2013.08.164
  89. F.S. Zhang, J.O. Nriagu, H. Itoh, Water Res 39 (2005) 389. https://doi.org/10.1016/j.watres.2004.09.027
  90. J.H. Ko, Y.H. Kwak, K.S. Yoo, J.K. Jeon, S.H. Park, Y.K. Park, J. Mater. Cycles Waste Manag. 13 (2011) 173. https://doi.org/10.1007/s10163-011-0015-z
  91. J.H. Kim, D.Y. Lee, T.S. Bae, Y.S. Lee, J. Ind. Eng. Chem. 25 (2015) 192. https://doi.org/10.1016/j.jiec.2014.10.034
  92. M.S. Park, S.H. Cho, E.G. Jeong, Y.S. Lee, J. Ind. Eng. Chem. 23 (2015) 27. https://doi.org/10.1016/j.jiec.2014.07.038
  93. H.S. Moon, I.S. Kim, S.J. Kang, S.K. Ryu, Carbon Lett. 15 (2014) 203. https://doi.org/10.5714/CL.2014.15.3.203
  94. J.H. Ko, R.S. Park, J.K. Jeon, D.H. Kim, S.C. Jung, S.C. Kim, Y.K. Park, J. Ind. Eng. Chem. 32 (2015) 109. https://doi.org/10.1016/j.jiec.2015.08.003
  95. X. Xiao, F. Tian, Y. Yan, Z. Wu, G. Cravotto, Korean J. Chem. Eng. 32 (2015) 1129. https://doi.org/10.1007/s11814-014-0317-7
  96. K. Mahmoudi, K. Hosni, N. Hamdi, E. Srasra, Korean J. Chem. Eng. 32 (2015) 274. https://doi.org/10.1007/s11814-014-0216-y
  97. M.S. Park, S.E. Lee, M.I. Kim, Y.S. Lee, Carbon Lett. 16 (2015) 45. https://doi.org/10.5714/CL.2015.16.1.045
  98. M.E. Mahmoud, G.M. Nabil, N.M.E. Mallah, H.I. Bassiouny, S. Kumar, T.M.A. Fattah, J. Ind. Eng. Chem. 37 (2016) 156. https://doi.org/10.1016/j.jiec.2016.03.020
  99. S.H. Park, H.J. Cho, C. Ryu, Y.K. Park, J. Ind. Eng. Chem. 36 (2016) 314. https://doi.org/10.1016/j.jiec.2016.02.021
  100. Z. Ding, Y. Wan, X. Hu, S. Wang, A.R. Zimmerman, B. Gao, J. Ind. Eng. Chem. 37 (2016) 261. https://doi.org/10.1016/j.jiec.2016.03.035
  101. M. Ruthiraan, N.M. Mubarak, R.K. Thines, E.C. Abdullah, J.N. Sahu, N.S. Jayakumar, P. Ganesan, Korean J. Chem. Eng. 32 (2015) 446. https://doi.org/10.1007/s11814-014-0260-7
  102. R.K. Xu, S.C. Xiao, J.H. Yuan, A.Z. Zhao, Bioresour. Technol. 102 (2011) 10293. https://doi.org/10.1016/j.biortech.2011.08.089
  103. X. Xu, X. Cao, L. Zhao, Chemosphere 92 (2013) 955. https://doi.org/10.1016/j.chemosphere.2013.03.009
  104. M. Ahmad, S.S. Lee, X. Dou, D. Mohan, J.K. Sung, J.E. Yang, Y.S. Ok, Bioresour. Technol. 118 (2012) 536. https://doi.org/10.1016/j.biortech.2012.05.042
  105. Z. Zhou, D. Shi, Y. Qiu, G.D. Sheng, Environ. Pollut. 158 (2010) 201. https://doi.org/10.1016/j.envpol.2009.07.020
  106. W. Ding, X. Dong, I.M. Ime, B. Gao, L.Q. Ma, Chemosphere 105 (2014) 68. https://doi.org/10.1016/j.chemosphere.2013.12.042
  107. K. Sun, M. Keiluweit, M. Kleber, Z. Pan, B. Xing, Bioresour. Technol. 102 (2011) 9897. https://doi.org/10.1016/j.biortech.2011.08.036
  108. C. Tan, Z. Zeyu, H. Rong, M. Ruihong, W. Hongtao, L. Wenjing, Chemosphere 134 (2015) 286. https://doi.org/10.1016/j.chemosphere.2015.04.052
  109. J.Y. Lee, M.Y. Han, Int. J. Urban Sci. 16 (2012) 115. https://doi.org/10.1080/12265934.2012.662587
  110. W.K. Kim, T.Y. Shim, Y.S. Kim, S.H. Hyun, C. Ryu, Y.K. Park, J. Jung, Bioresour. Technol. 138 (2013) 266. https://doi.org/10.1016/j.biortech.2013.03.186
  111. H.J. Cho, K.T. Baek, J.K. Jeon, S.H. Park, D.J. Suh, Y.K. Park, Chem. Eng. J. 217 (2013) 205. https://doi.org/10.1016/j.cej.2012.11.123
  112. A.W. Samsuri, F.S. Zadeh, B.J.S. Bardan, Int. J. Environ. Sci. Technol. 11 (2014) 967. https://doi.org/10.1007/s13762-013-0291-3
  113. Z. Ding, X. Hu, Y.S. Wan, S.G. Wang, B. Gao, J. Ind. Eng. Chem. 33 (2015) 239.
  114. H. Roh, M.R. Yu, K. Yakkala, J.R. Koduru, J.K. Yang, Y.Y. Chang, J. Ind. Eng. Chem. 26 (2015) 226. https://doi.org/10.1016/j.jiec.2014.11.034
  115. T.M.A. Fattah, M.E. Mahmoud, S.B. Ahmed, M.D. Huff, J.W. Lee, S. Kumar, J. Ind. Eng. Chem. 22 (2015) 103. https://doi.org/10.1016/j.jiec.2014.06.030
  116. S.E. Elaigwu, V. Rocher, G. Kyriakou, G.M. Greenway, J. Ind. Eng. Chem. 20 (2014) 3467. https://doi.org/10.1016/j.jiec.2013.12.036
  117. B.S. Kim, H.W. Lee, S.H. Park, K.T. Baek, J.K. Jeon, H.J. Cho, S.C. Jung, S.C. Kim, Y.K. Park, Environ. Sci. Pollut. Res. 23 (2016) 985. https://doi.org/10.1007/s11356-015-4368-z
  118. X. Zhu, Y. Liu, C. Zhou, G. Luo, S. Zhang, J. Chen, Carbon 77 (2014) 627. https://doi.org/10.1016/j.carbon.2014.05.067
  119. P. Liu, W.J. Liu, H. Jiang, J.J. Chen, W.W. Li, H.Q. Yu, Bioresour. Technol. 121 (2012) 235. https://doi.org/10.1016/j.biortech.2012.06.085
  120. L. Sun, D. Chen, S. Wan, Z. Yu, Bioresour. Technol. 198 (2015) 300. https://doi.org/10.1016/j.biortech.2015.09.026
  121. S. Mubarik, A. Saeed, M.M. Athar, M. Iqbal, J. Ind. Eng. Chem. 33 (2016) 115. https://doi.org/10.1016/j.jiec.2015.09.029
  122. Z. Zhang, X. Feng, X.X. Yue, F.Q. An, W.X. Zhou, J.F. Gao, T.P. Hu, C.C. Wei, Korean J. Chem. Eng. 32 (2015) 1564. https://doi.org/10.1007/s11814-014-0372-0
  123. A. Kumar, A.C. Pandey, Int. J. Urban Sci. 17 (2013) 117. https://doi.org/10.1080/12265934.2013.766501
  124. J.Y. Lee, S.H. Park, J.K. Jeon, K.S. Yoo, S.S. Kim, Y.K. Park, Korean J. Chem. Eng. 28 (2011) 1556. https://doi.org/10.1007/s11814-011-0007-7
  125. A. Samanta, A. Zhao, G.K.H. Shimizu, P. Sarkar, R. Gupta, Ind. Eng. Chem. Res. 51 (2012) 1438. https://doi.org/10.1021/ie200686q
  126. A.E. Creamer, B. Gao, M. Zhang, Chem. Eng. J. 249 (2014) 174. https://doi.org/10.1016/j.cej.2014.03.105
  127. Y.F. Huang, P.T. Chiueh, C.H. Shih, S.L. Lo, L. Sun, Y. Zhong, C. Qiu, Energy 84 (2015) 75. https://doi.org/10.1016/j.energy.2015.02.026
  128. A.E. Creamer, B. Gao, S. Wang, Chem. Eng. J. 283 (2016) 826. https://doi.org/10.1016/j.cej.2015.08.037
  129. Y. Shen, M. Chen, T. Sun, J. Jia, Fuel 159 (2015) 570. https://doi.org/10.1016/j.fuel.2015.07.007
  130. P. Hasler, Th. Nussbaumer, Biomass Bioenerg. 16 (1999) 385. https://doi.org/10.1016/S0961-9534(99)00018-5
  131. A. Paethanom, S. Nakahara, M. Kobayashi, P. Prawisudha, K. Yoshikawa, Fuel Process. Technol. 104 (2012) 144. https://doi.org/10.1016/j.fuproc.2012.05.006
  132. T. Phuphuakrat, T. Namioka, K. Yoshikawa, Appl. Energy 87 (2010) 2203. https://doi.org/10.1016/j.apenergy.2009.12.002
  133. T. Phuphuakrat, T. Namioka, K. Yoshikawa, Bioresour. Technol. 102 (2011) 543. https://doi.org/10.1016/j.biortech.2010.07.073
  134. S.A. Nair, A.J.M. Pemen, K. Yan, F.M.V. Gompel, H.E.M.V. Leuken, E.J.M.V. Heesch, K.J. Ptasinski, A.A.H. Drinkenburg, Fuel Process. Technol. 84 (2003) 161. https://doi.org/10.1016/S0378-3820(03)00053-5
  135. J. Han, H.J. Kim, Renew. Sust. Energ. Rev. 12 (2008) 397. https://doi.org/10.1016/j.rser.2006.07.015
  136. Y. Chen, Y.H. Luo, W.G. Wu, Y. Su, Energy Fuels 23 (2009) 4659. https://doi.org/10.1021/ef900623n
  137. K. Qian, A. Kumar, Fuel 162 (2015) 47. https://doi.org/10.1016/j.fuel.2015.08.064
  138. Y.B. Jo, S.H. Park, J.K. Jeon, Y.K. Park, Appl. Chem. Eng. 23 (2012) 604.
  139. E. Lotero, Y.J. Liu, D.E. Lopez, K. Suwannakarn, D.A. Bruce, J.G. Goodwin, Ind. Eng. Chem. Res. 44 (2005) 5353. https://doi.org/10.1021/ie049157g
  140. A.M. Dehkhoda, A.H. West, N. Ellis, Appl. Catal. A: Gen. 382 (2010) 197. https://doi.org/10.1016/j.apcata.2010.04.051
  141. J.R. Kastner, J. Miller, D.P. Geller, J. Locklin, L.H. Keith, T. Johnson, Catal. Today 90 (2012) 122.
  142. Y.B. Jo, J.S. Cha, J.H. Ko, M.C. Shin, S.H. Park, J.K. Jeon, S.S. Kim, Y.K. Park, Korean J. Chem. Eng. 28 (2011) 106. https://doi.org/10.1007/s11814-010-0283-7
  143. J.H. Yuan, R.K. Xu, Soil Use Manage. 27 (2011) 110. https://doi.org/10.1111/j.1475-2743.2010.00317.x
  144. J.H. Yuan, R.K. Xu, N. Wang, J.Y. Li, Pedosphere 21 (2011) 302. https://doi.org/10.1016/S1002-0160(11)60130-6
  145. N.B. Klinghoffer, M.J. Castaldi, A. Nzihou, Fuel 157 (2015) 37. https://doi.org/10.1016/j.fuel.2015.04.036
  146. R. Azargohar, S. Nanda, J.A. Kozinski, A.K. Dalai, R. Sutarto, Fuel 125 (2014) 90. https://doi.org/10.1016/j.fuel.2014.01.083
  147. B. Liang, J. Lehmann, D. Solomon, J. Kinyangi, J. Grossman, B. O'Neill, J.O. Skjemstad, J. Thies, F.J. Luizao, J. Petersen, E.G. Neves, Soil Sci. Soc. Am. J. 70 (2006) 1719. https://doi.org/10.2136/sssaj2005.0383
  148. J.W. Lee, M. Kidder, B.R. Evans, S. Paik, A.C. Buchanan, C.T. Garten, R.C. Brown, Environ. Sci. Technol. 44 (2010) 7970. https://doi.org/10.1021/es101337x
  149. C.L. Sabine, M. Heimann, P. Artaxo, D.C.E. Bakker, C.T.A. Chen, C.B. Field, N. Gruber, C.L. Quere, R.G. Prinn, J.E. Richey, P.R. Lankao, J.A. Sathaye, R. Valentini, in: C.B. Field, M.R. Raupach (Eds.), Integrating Humans, Climate, and the Natural World, Island Press, Washington, DC, 2004, p. 17.
  150. Y. Yanai, K. Toyata, M. Okazaki, Soil Sci. Plant Nutr. 53 (2007) 181. https://doi.org/10.1111/j.1747-0765.2007.00123.x
  151. K.A. Spokas, W.C. Koskinen, J.M. Baker, D.C. Reicosky, Chemosphere 77 (2009) 574. https://doi.org/10.1016/j.chemosphere.2009.06.053
  152. A. Thomazini, K. Spokas, K. Hall, J. Ippolito, R. Lentz, J. Novak, Agric. Ecosyst. Environ. 207 (2015) 183. https://doi.org/10.1016/j.agee.2015.04.012
  153. D.H. Jung, Carbon Lett. 1 (2000) 98.
  154. S.Y. Ahn, S.Y. Eom, Y.H. Rhie, Y.M. Sung, C.E. Moon, G.M. Choi, D.J. Kim, Appl. Energy 105 (2013) 207. https://doi.org/10.1016/j.apenergy.2013.01.023
  155. I.I.G. Inal, S.M. Holmes, A. Banford, Z. Aktas, Appl. Surf. Sci. 357 (2015) 696. https://doi.org/10.1016/j.apsusc.2015.09.067
  156. E.A. Cho, S.Y. Lee, S.J. Park, Carbon Lett. 15 (2014) 210. https://doi.org/10.5714/CL.2014.15.3.210
  157. K. Wang, N. Zhao, S. Lei, R. Yan, X. Tian, J. Wang, Y. Song, D. Xu, Q. Guo, L. Liu, Electrochim. Acta 166 (2015) 1. https://doi.org/10.1016/j.electacta.2015.03.048
  158. A.M. Abioye, F.N. Ani, Renew. Sust. Energ. Rev. 52 (2015) 1282. https://doi.org/10.1016/j.rser.2015.07.129
  159. S. Niaz, T. Manzoor, A.H. Pandith, Renew. Sust. Energ. Rev. 50 (2015) 457. https://doi.org/10.1016/j.rser.2015.05.011
  160. S.H. Hwang, W.M. Choi, S.K. Lim, Mater. Lett. 167 (2015) 18.
  161. G. Krishnamurthy, R. Namitha, S. Agarwal, Proc. Mater. Sci. 5 (2014) 1056. https://doi.org/10.1016/j.mspro.2014.07.397
  162. A.G. Klechikov, G. Mercier, P. Merino, S. Blanco, C. Merino, A.V. Talyzin, Microporous Mesoporous Mater. 210 (2015) 46. https://doi.org/10.1016/j.micromeso.2015.02.017
  163. Y.K. Choi, S.J. Park, Carbon Lett. 16 (2015) 127. https://doi.org/10.5714/CL.2015.16.2.127
  164. Y.J. Heo, S.J. Park, J. Ind. Eng. Chem. 31 (2015) 330. https://doi.org/10.1016/j.jiec.2015.07.006
  165. T. Ramesh, N. Rajalakshmi, K.S. Dhathathreyan, J. Energy Storage 4 (2015) 89. https://doi.org/10.1016/j.est.2015.09.005

Cited by

  1. Adsorptive removal of atmospheric pollutants over Pyropia tenera chars vol.19, pp.None, 2016, https://doi.org/10.5714/cl.2016.19.079
  2. Insight into adsorption mechanism of cationic dye onto agricultural residues-derived hydrochars: Negligible role of π-π interaction vol.34, pp.6, 2016, https://doi.org/10.1007/s11814-017-0056-7
  3. Effects of organic and inorganic metal salts on thermogravimetric pyrolysis of biomass components vol.34, pp.12, 2016, https://doi.org/10.1007/s11814-017-0209-8
  4. Mass preparation of micro/nano-powders of biochar with water-dispersibility and their potential application vol.41, pp.18, 2017, https://doi.org/10.1039/c7nj00742f
  5. Application of biochar-based catalysts in biomass upgrading: a review vol.7, pp.77, 2016, https://doi.org/10.1039/c7ra09307a
  6. Recent advances in engineered biochar productions and applications vol.47, pp.22, 2017, https://doi.org/10.1080/10643389.2017.1418580
  7. Biochemical characterization of cotton stalks biochar suggests its role in soil as amendment and decontamination vol.6, pp.2, 2016, https://doi.org/10.12989/aer.2017.6.2.127
  8. Economic analysis of a hypothetical bamboo-biochar plant in Zhejiang province, China vol.35, pp.12, 2016, https://doi.org/10.1177/0734242x17736945
  9. Highly Efficient, Biochar-Derived Molybdenum Carbide Hydrogen Evolution Electrocatalyst vol.8, pp.29, 2016, https://doi.org/10.1002/aenm.201801461
  10. Morphology, pore size distribution, and nutrient characteristics in biochars under different pyrolysis temperatures and atmospheres vol.20, pp.2, 2018, https://doi.org/10.1007/s10163-017-0666-5
  11. Production of activated carbon as catalyst support by microwave pyrolysis of palm kernel shell: a comparative study of chemical versus physical activation vol.44, pp.6, 2016, https://doi.org/10.1007/s11164-018-3388-y
  12. Optimization of palm oil mill sludge biochar preparation for sulfur dioxide removal vol.25, pp.26, 2018, https://doi.org/10.1007/s11356-017-9180-5
  13. Assessing the Potential of Biochars Prepared by Steam-Assisted Slow Pyrolysis for CO2 Adsorption and Separation vol.32, pp.10, 2016, https://doi.org/10.1021/acs.energyfuels.8b01058
  14. Distributed processes for biomass conversion could aid UN Sustainable Development Goals vol.1, pp.10, 2016, https://doi.org/10.1038/s41929-018-0166-6
  15. Research on biocharviaa comprehensive scientometric approach vol.8, pp.50, 2016, https://doi.org/10.1039/c8ra05689g
  16. The factors affecting biochar application in restoring heavy metal-polluted soil and its potential applications vol.34, pp.2, 2018, https://doi.org/10.1080/02757540.2017.1404992
  17. Removal of organic contaminant by municipal sewage sludge-derived hydrochar: kinetics, thermodynamics and mechanisms vol.78, pp.4, 2016, https://doi.org/10.2166/wst.2018.373
  18. Assessing the Potential of Using Biochar as a Soil Conditioner vol.107, pp.None, 2018, https://doi.org/10.1088/1755-1315/107/1/012059
  19. Characteristics of biochar produced from yak manure at different pyrolysis temperatures and its effects on the yield and growth of highland barley vol.30, pp.1, 2018, https://doi.org/10.1080/09542299.2018.1487774
  20. Advances in in situ and ex situ tar reforming with biochar catalysts for clean energy production vol.2, pp.2, 2016, https://doi.org/10.1039/c7se00553a
  21. Adsorption of methyl orange dye onto biochar adsorbent prepared from chicken manure vol.77, pp.5, 2016, https://doi.org/10.2166/wst.2018.003
  22. Peat moss-derived biochar for sonocatalytic applications vol.42, pp.None, 2016, https://doi.org/10.1016/j.ultsonch.2017.11.005
  23. Stabilization of bio-oil over a low cost dolomite catalyst vol.35, pp.4, 2016, https://doi.org/10.1007/s11814-018-0002-3
  24. Review of the use of activated biochar for energy and environmental applications vol.26, pp.None, 2016, https://doi.org/10.5714/cl.2018.26.001
  25. One-step microwave synthesis of magnetic biochars with sorption properties vol.26, pp.None, 2018, https://doi.org/10.5714/cl.2018.26.031
  26. How does biochar influence soil N cycle? A meta-analysis vol.426, pp.1, 2018, https://doi.org/10.1007/s11104-018-3619-4
  27. The Effect of Biomass Torrefaction on the Catalytic Pyrolysis of Korean Cork Oak vol.29, pp.3, 2018, https://doi.org/10.14478/ace.2018.1050
  28. A critical review of mechanisms involved in the adsorption of organic and inorganic contaminants through biochar vol.11, pp.16, 2018, https://doi.org/10.1007/s12517-018-3790-1
  29. Catalytic Copyrolysis of Cork Oak and Waste Plastic Films over HBeta vol.8, pp.8, 2016, https://doi.org/10.3390/catal8080318
  30. Operando DRIFTS-MS Study of WGS and rWGS Reaction on Biochar-Based Pt Catalysts: The Promotional Effect of Na vol.4, pp.3, 2016, https://doi.org/10.3390/c4030047
  31. Activated Carbons Derived from High-Temperature Pyrolysis of Lignocellulosic Biomass vol.4, pp.3, 2016, https://doi.org/10.3390/c4030051
  32. Preparation and Application of Biochar-Based Catalysts for Biofuel Production vol.8, pp.9, 2016, https://doi.org/10.3390/catal8090346
  33. Physical Activation of Waste-Derived Materials for Biogas Cleaning vol.11, pp.9, 2016, https://doi.org/10.3390/en11092338
  34. Removal of toxic metals from aqueous solution by biochars derived from long-root Eichhornia crassipes vol.5, pp.10, 2016, https://doi.org/10.1098/rsos.180966
  35. Adsorptive removal of odour substances and NO and catalytic esterification using empty fruit bunch derived biochar vol.28, pp.None, 2016, https://doi.org/10.5714/cl.2018.28.081
  36. Effect of Fe-functionalized biochar on toxicity of a technosol contaminated by Pb and As: sorption and phytotoxicity tests vol.25, pp.33, 2016, https://doi.org/10.1007/s11356-018-3247-9
  37. Catalytic Co-Pyrolysis of Kraft Lignin with Refuse-Derived Fuels Using Ni-Loaded ZSM-5 Type Catalysts vol.8, pp.11, 2018, https://doi.org/10.3390/catal8110506
  38. An Experimental and Theoretical Study of the Gasification of Miscanthus Briquettes in a Double-Stage Downdraft Gasifier: Syngas, Tar, and Biochar Characterization vol.11, pp.11, 2016, https://doi.org/10.3390/en11113225
  39. Adsorption and Biomass: Current Interconnections and Future Challenges vol.5, pp.4, 2016, https://doi.org/10.1007/s40518-018-0116-6
  40. Application of Biochar to the Remediation of Pb-Contaminated Solutions vol.10, pp.12, 2016, https://doi.org/10.3390/su10124440
  41. EXPLAINING THE WATER-HOLDING CAPACITY OF BIOCHAR BY SCANNING ELECTRON MICROSCOPE IMAGES vol.31, pp.4, 2016, https://doi.org/10.1590/1983-21252018v31n420rc
  42. Towards practical application of gasification: a critical review from syngas and biochar perspectives vol.48, pp.22, 2016, https://doi.org/10.1080/10643389.2018.1518860
  43. Effect of Biochar on Physicochemical Properties of Heavy Metal Contaminated Soil and Spinach Growth vol.7, pp.1, 2016, https://doi.org/10.12677/hjss.2019.71007
  44. Spectral Induced Polarization of Biochar in Variably Saturated Soil vol.18, pp.1, 2016, https://doi.org/10.2136/vzj2018.12.0213
  45. A review and future directions on enhancing sustainability benefits across food-energy-water systems: the potential role of biochar-derived products vol.6, pp.5, 2019, https://doi.org/10.3934/environsci.2019.5.379
  46. Recent advancements in biochar preparation, feedstocks, modification, characterization and future applications vol.8, pp.1, 2019, https://doi.org/10.1080/21622515.2019.1631393
  47. A Pine Enhanced Biochar Does Not Decrease Enteric CH4 Emissions, but Alters the Rumen Microbiota vol.6, pp.None, 2019, https://doi.org/10.3389/fvets.2019.00308
  48. Microwave Pyrolysis with Steam Activation in Producing Activated Carbon for Removal of Herbicides in Agricultural Surface Water vol.58, pp.2, 2019, https://doi.org/10.1021/acs.iecr.8b03319
  49. Role of Biochar in Anaerobic Digestion Based Biorefinery for Food Waste vol.7, pp.None, 2016, https://doi.org/10.3389/fenrg.2019.00014
  50. Magnetic nanoferromanganese oxides modified biochar derived from pine sawdust for adsorption of tetracycline hydrochloride vol.26, pp.6, 2016, https://doi.org/10.1007/s11356-018-4033-4
  51. Pyrolysis of Olive Mill Waste with On-line and Ex-post Analysis vol.10, pp.3, 2016, https://doi.org/10.1007/s12649-017-0126-4
  52. Combined removal of particulate matter and nitrogen oxides from the exhaust gas of small-scale biomass combustion vol.9, pp.1, 2019, https://doi.org/10.1007/s13399-018-0303-0
  53. The multi-scale challenges of biomass fast pyrolysis and bio-oil upgrading: Review of the state of art and future research directions vol.71, pp.None, 2016, https://doi.org/10.1016/j.pecs.2018.10.006
  54. Cross-Linked Magnetic Chitosan/Activated Biochar for Removal of Emerging Micropollutants from Water: Optimization by the Artificial Neural Network vol.11, pp.3, 2016, https://doi.org/10.3390/w11030551
  55. Manufacture of high density carbon blocks by self-sintering coke produced via a two-stage heat treatment of coal tar vol.5, pp.3, 2016, https://doi.org/10.1016/j.heliyon.2019.e01341
  56. Biomass-Derived Carbonaceous Materials: Recent Progress in Synthetic Approaches, Advantages, and Applications vol.7, pp.5, 2016, https://doi.org/10.1021/acssuschemeng.8b06030
  57. Removal of Eriochrome Black T by sulfate radical generated from Fe-impregnated biochar/persulfate in Fenton-like reaction vol.71, pp.None, 2016, https://doi.org/10.1016/j.jiec.2018.11.026
  58. Control of NOx emissions by air staging in small- and medium-scale biomass pellet boilers vol.26, pp.10, 2016, https://doi.org/10.1007/s11356-019-04396-8
  59. Preparation and Modification of Biochar Materials and their Application in Soil Remediation vol.9, pp.7, 2016, https://doi.org/10.3390/app9071365
  60. The Effect of Biochar Addition on the Biogas Production Kinetics from the Anaerobic Digestion of Brewers’ Spent Grain vol.12, pp.8, 2019, https://doi.org/10.3390/en12081518
  61. A recyclable route to produce biochar with a tailored structure and surface chemistry for enhanced charge storage vol.21, pp.8, 2016, https://doi.org/10.1039/c9gc00655a
  62. Microwave vacuum pyrolysis conversion of waste mushroom substrate into biochar for use as growth medium in mushroom cultivation vol.94, pp.5, 2016, https://doi.org/10.1002/jctb.5897
  63. Adsorption of aromatic compounds by biochar: influence of the type of tropical biomass precursor vol.26, pp.7, 2019, https://doi.org/10.1007/s10570-019-02394-0
  64. Combined Effects of Plant Cultivation and Sorbing Carbon Amendments on Freely Dissolved PAHs in Contaminated Soil vol.53, pp.9, 2019, https://doi.org/10.1021/acs.est.8b06265
  65. Environmentally friendly synthesis of photoluminescent biochar dots from waste soy residues for rapid monitoring of potentially toxic elements vol.9, pp.38, 2019, https://doi.org/10.1039/c9ra03001h
  66. In-depth comparison of the physicochemical characteristics of bio-char derived from biomass pseudo components: Hemicellulose, cellulose, and lignin vol.140, pp.None, 2016, https://doi.org/10.1016/j.jaap.2019.03.015
  67. The use of exhausted grape marc to produce biofuels and biofertilizers: Effect of pyrolysis temperatures on biochars properties vol.107, pp.None, 2016, https://doi.org/10.1016/j.rser.2019.03.034
  68. Capability of amendments (biochar, compost and garden soil) added to a mining technosol contaminated by Pb and As to allow poplar seed (Populus nigra L.) germination vol.191, pp.7, 2016, https://doi.org/10.1007/s10661-019-7561-6
  69. Chemical Aging Changed Aggregation Kinetics and Transport of Biochar Colloids vol.53, pp.14, 2016, https://doi.org/10.1021/acs.est.9b00583
  70. Peat moss-derived biochars as effective sorbents for VOCs’ removal in groundwater vol.41, pp.4, 2016, https://doi.org/10.1007/s10653-017-0012-9
  71. A comprehensive review on physical activation of biochar for energy and environmental applications vol.35, pp.6, 2019, https://doi.org/10.1515/revce-2017-0113
  72. A comprehensive review on physical activation of biochar for energy and environmental applications vol.35, pp.6, 2019, https://doi.org/10.1515/revce-2017-0113
  73. Tuning Sugarcane Bagasse Biochar into a Potential Carbon Black Substitute for Polyethylene Composites vol.27, pp.8, 2016, https://doi.org/10.1007/s10924-019-01468-1
  74. Potential Use of Biochar from Various Waste Biomass as Biosorbent in Co(II) Removal Processes vol.11, pp.8, 2016, https://doi.org/10.3390/w11081565
  75. 110th Anniversary: Syngas Production Enhancement Using Calcium- and Potassium-Impregnated Chars vol.58, pp.33, 2016, https://doi.org/10.1021/acs.iecr.9b02238
  76. Heat-treated biochar impregnated with zero-valent iron nanoparticles for organic contaminants removal from aqueous phase: Material characterizations and kinetic studies vol.76, pp.None, 2016, https://doi.org/10.1016/j.jiec.2019.03.041
  77. Sunflower stalk-derived biochar enhanced thermal activation of persulfate for high efficient oxidation of p-nitrophenol vol.26, pp.26, 2016, https://doi.org/10.1007/s11356-019-05881-w
  78. A Review of Biochar Properties and Their Utilization in Crop Agriculture and Livestock Production vol.9, pp.17, 2019, https://doi.org/10.3390/app9173494
  79. Examination of Commercial Biochars to Compare Their Endosulfan Adsorption Properties vol.23, pp.3, 2016, https://doi.org/10.7585/kjps.2019.23.3.172
  80. Enhanced reductive dechlorination of 1,1,1-trichloroethane using zero-valent iron-biochar-carrageenan microspheres: preparation and microcosm study vol.26, pp.30, 2016, https://doi.org/10.1007/s11356-018-1235-8
  81. Chemical activation of biochar for energy and environmental applications: a comprehensive review vol.35, pp.7, 2016, https://doi.org/10.1515/revce-2018-0003
  82. Prediction Method for Torrefied Rice Husk Based on Gray-scale Analysis vol.4, pp.18, 2016, https://doi.org/10.1021/acsomega.9b02478
  83. Pyrolysis Process as a Sustainable Management Option of Poultry Manure: Characterization of the Derived Biochars and Assessment of their Nutrient Release Capacities vol.11, pp.11, 2016, https://doi.org/10.3390/w11112271
  84. Biochar-derived heterogeneous catalysts for biodiesel production vol.17, pp.4, 2019, https://doi.org/10.1007/s10311-019-00885-x
  85. Just or bust? Energy justice and the impacts of siting solar pyrolysis biochar production facilities vol.58, pp.None, 2016, https://doi.org/10.1016/j.erss.2019.101259
  86. Optimization of biochar preparation from the stem of Eichhornia crassipes using response surface methodology on adsorption of Cd2+ vol.9, pp.1, 2016, https://doi.org/10.1038/s41598-019-54105-1
  87. Optimization of biochar preparation from the stem of Eichhornia crassipes using response surface methodology on adsorption of Cd2+ vol.9, pp.1, 2016, https://doi.org/10.1038/s41598-019-54105-1
  88. Temporal Changes in the Efficiency of Biochar- and Compost-Based Amendments on Copper Immobilization in Vineyard Soils vol.3, pp.4, 2016, https://doi.org/10.3390/soilsystems3040078
  89. Nitrogen-Doped Hierarchical Porous Biochar Derived from Corn Stalks for Phenol-Enhanced Adsorption vol.33, pp.12, 2016, https://doi.org/10.1021/acs.energyfuels.9b02924
  90. Facile synthesis of corncob biochar via in-house modified pyrolysis for removal of methylene blue in wastewater vol.7, pp.1, 2020, https://doi.org/10.1088/2053-1591/ab6767
  91. Ultra-fast pyrolysis of lignocellulose using highly tuned microwaves: synergistic effect of a cylindrical cavity resonator and a frequency-auto-tracking solid-state microwave generator vol.22, pp.2, 2016, https://doi.org/10.1039/c9gc02745a
  92. Biochar from pyrolysis of biological sludge from wastewater treatment vol.6, pp.suppl1, 2020, https://doi.org/10.1016/j.egyr.2019.09.063
  93. Critical review of magnetic biosorbents: Their preparation, application, and regeneration for wastewater treatment vol.702, pp.None, 2016, https://doi.org/10.1016/j.scitotenv.2019.134893
  94. Three-dimensional microspheric g-C3N4 coupled by Broussonetia papyrifera biochar: facile sodium alginate immobilization and excellent photocatalytic Cr(iv) reduction vol.10, pp.11, 2016, https://doi.org/10.1039/c9ra09981f
  95. Mini-Review on Char Catalysts for Tar Reforming during Biomass Gasification: The Importance of Char Structure vol.34, pp.2, 2020, https://doi.org/10.1021/acs.energyfuels.9b03725
  96. Biochars obtained from arabica coffee husks by a pyrolysis process: characterization and application in Fe(ii) removal in aqueous systems vol.44, pp.8, 2016, https://doi.org/10.1039/c9nj04144c
  97. Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects vol.19, pp.1, 2020, https://doi.org/10.1007/s11157-020-09523-3
  98. Bone Char Mediated Dechlorination of Trichloroethylene by Green Rust vol.54, pp.6, 2016, https://doi.org/10.1021/acs.est.9b07069
  99. Remediation of Lead-Contaminated Water by Virgin Coniferous Wood Biochar Adsorbent: Batch and Column Application vol.231, pp.4, 2016, https://doi.org/10.1007/s11270-020-04496-z
  100. Techno-Economic Feasibility and Spatial Analysis of Thermochemical Conversion Pathways for Regional Poultry Waste Valorization vol.8, pp.14, 2020, https://doi.org/10.1021/acssuschemeng.0c01229
  101. A Review on the Properties of Copyrolysis Char from Coal Blended with Biomass vol.34, pp.4, 2016, https://doi.org/10.1021/acs.energyfuels.0c00014
  102. Chemical and biological immobilization mechanisms of potentially toxic elements in biochar-amended soils vol.50, pp.9, 2020, https://doi.org/10.1080/10643389.2019.1642832
  103. Sustainable remediation with an electroactive biochar system: mechanisms and perspectives vol.22, pp.9, 2016, https://doi.org/10.1039/d0gc00717j
  104. Adsorption of Lead (II) from Aqueous Solution with High Efficiency by Hydrothermal Biochar Derived from Honey vol.17, pp.10, 2016, https://doi.org/10.3390/ijerph17103441
  105. Kinetic and mechanistic investigation of catalytic alkaline thermal treatment of xylan producing high purity H2 with in-situ carbon capture vol.85, pp.None, 2020, https://doi.org/10.1016/j.jiec.2020.02.004
  106. Hybrid Manufacturing of 3D Hierarchical Porous Carbons for Electrochemical Storage vol.5, pp.6, 2020, https://doi.org/10.1002/admt.201901030
  107. Flexible Supercapacitors Prepared Using the Peanut-Shell-Based Carbon vol.5, pp.24, 2016, https://doi.org/10.1021/acsomega.0c00966
  108. Char‐Supported Pd Complex of N ‐Heterocyclic Carbene: A Novel Recyclable Catalyst for Coupling Reaction vol.5, pp.25, 2020, https://doi.org/10.1002/slct.202001850
  109. Design, Cost Estimation and Sensitivity Analysis for a Production Process of Activated Carbon from Waste Nutshells by Physical Activation vol.8, pp.8, 2016, https://doi.org/10.3390/pr8080945
  110. Biochar Synthesis for Industrial Wastewater Treatment: A Critical Review vol.1008, pp.None, 2016, https://doi.org/10.4028/www.scientific.net/msf.1008.202
  111. Potential Use of Waste Activated Sludge Hydrothermally Treated as a Renewable Fuel or Activated Carbon Precursor vol.25, pp.15, 2020, https://doi.org/10.3390/molecules25153534
  112. Applications of Modified Biochar-Based Materials for the Removal of Environment Pollutants: A Mini Review vol.12, pp.15, 2016, https://doi.org/10.3390/su12156112
  113. Stabilization of heavy metal-contaminated soils by biochar: Challenges and recommendations vol.729, pp.None, 2016, https://doi.org/10.1016/j.scitotenv.2020.139060
  114. Coconut fiber biochar alters physical and chemical properties in sandy soils vol.43, pp.None, 2020, https://doi.org/10.4025/actasciagron.v43i1.51801
  115. Insight into the co-pyrolysis of different blended feedstocks to biochar for the adsorption of organic and inorganic pollutants: A review vol.265, pp.None, 2016, https://doi.org/10.1016/j.jclepro.2020.121762
  116. Green and simple method for preparing iron oxide nanoparticles supported on mesoporous biochar as a Fenton catalyst vol.34, pp.9, 2016, https://doi.org/10.1002/aoc.5786
  117. Current Status of Energy Production from Solid Biomass in North-West Italy vol.13, pp.17, 2016, https://doi.org/10.3390/en13174390
  118. Effect of carbonization temperature on mechanical properties and biocompatibility of biochar/ultra-high molecular weight polyethylene composites vol.196, pp.None, 2020, https://doi.org/10.1016/j.compositesb.2020.108120
  119. Application of highly stable biochar catalysts for efficient pyrolysis of plastics: a readily accessible potential solution to a global waste crisis vol.4, pp.9, 2016, https://doi.org/10.1039/d0se00652a
  120. Thermogravimetric Analysis-Fourier Transform Infrared Spectroscopy Study on the Effect of Extraction Pretreatment on the Pyrolysis Properties of Eucalyptus Wood Waste vol.5, pp.36, 2016, https://doi.org/10.1021/acsomega.0c03271
  121. Influence of Granular Activated Carbon on Anaerobic Co-Digestion of Sugar Beet Pulp and Distillers Grains with Solubles vol.8, pp.10, 2016, https://doi.org/10.3390/pr8101226
  122. Investigating the Influence of Biochar Amendment on the Physicochemical Properties of Podzolic Soil vol.10, pp.10, 2016, https://doi.org/10.3390/agriculture10100471
  123. Reduction of Unburned Carbon Release and NOx Emission from a Pulverized Wood Pellet Boiler Retrofitted for Fuel Switching from Coal vol.13, pp.19, 2016, https://doi.org/10.3390/en13195077
  124. Critical Review on Biochar‐Supported Catalysts for Pollutant Degradation and Sustainable Biorefinery vol.4, pp.10, 2016, https://doi.org/10.1002/adsu.201900149
  125. Differential effects of three amendments on the immobilisation of cadmium and lead for Triticum aestivum grown on polluted soil vol.27, pp.32, 2016, https://doi.org/10.1007/s11356-020-10079-6
  126. Using corncob-based biochar to intercept BTEX in stormwater filtration systems vol.82, pp.9, 2016, https://doi.org/10.2166/wst.2020.463
  127. A critical literature review on biosolids to biochar: an alternative biosolids management option vol.19, pp.4, 2016, https://doi.org/10.1007/s11157-020-09553-x
  128. Feedstock choice, pyrolysis temperature and type influence biochar characteristics: a comprehensive meta-data analysis review vol.2, pp.4, 2016, https://doi.org/10.1007/s42773-020-00067-x
  129. Design and Assessment of a Novel Cogeneration Process of Synthetic Natural Gas and Char via Biomass Pyrolysis-Coupled Hydrothermal Gasification vol.59, pp.51, 2016, https://doi.org/10.1021/acs.iecr.0c04504
  130. Biochar admixtured lightweight, porous and tougher cement mortars: Mechanical, durability and micro computed tomography analysis vol.750, pp.None, 2016, https://doi.org/10.1016/j.scitotenv.2020.142327
  131. Production of Aromatic Hydrocarbons from Biomass vol.61, pp.1, 2021, https://doi.org/10.1134/s0965544121010023
  132. State-of-the-Art Char Production with a Focus on Bark Feedstocks: Processes, Design, and Applications vol.9, pp.1, 2016, https://doi.org/10.3390/pr9010087
  133. A Review of Intermediate Pyrolysis as a Technology of Biomass Conversion for Coproduction of Biooil and Adsorption Biochar vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/5533780
  134. Recent Developments in the Immobilization of Laccase on Carbonaceous Supports for Environmental Applications - A Critical Review vol.9, pp.None, 2016, https://doi.org/10.3389/fbioe.2021.778239
  135. Nitrous oxide, methane emissions and grain yield in rainfed wheat grown under nitrogen enriched biochar and straw in a semiarid environment vol.9, pp.None, 2016, https://doi.org/10.7717/peerj.11937
  136. Influences of rice straw biochar and organic manure on forage soybean nutrient and Cd uptake vol.23, pp.1, 2021, https://doi.org/10.1080/15226514.2020.1789843
  137. Biochar: an organic amendment to crops and an environmental solution vol.6, pp.1, 2016, https://doi.org/10.3934/agrfood.2021024
  138. Use of biochar as feed supplements for animal farming vol.51, pp.2, 2016, https://doi.org/10.1080/10643389.2020.1721980
  139. An Integrated Approach to Convert Lignocellulosic and Wool Residues into Balanced Fertilisers vol.14, pp.2, 2021, https://doi.org/10.3390/en14020497
  140. Bio-oil and biochar from microwave-assisted catalytic pyrolysis of corn stover using sodium carbonate catalyst vol.94, pp.None, 2016, https://doi.org/10.1016/j.joei.2020.09.008
  141. Progress and future prospects in biochar composites: Application and reflection in the soil environment vol.51, pp.3, 2016, https://doi.org/10.1080/10643389.2020.1713030
  142. Self-Supporting MnOx Nanoparticles on Loofah-Sponge-Derived Carbon Felt for Electroassisted Catalytic Wet Air Oxidation of Water Contaminants vol.1, pp.2, 2016, https://doi.org/10.1021/acsestengg.0c00036
  143. High-Temperature Annealed Biochar as a Conductive Filler for the Production of Piezoresistive Materials for Energy Conversion Application vol.3, pp.2, 2016, https://doi.org/10.1021/acsaelm.0c00971
  144. Biochar industry to circular economy vol.757, pp.None, 2021, https://doi.org/10.1016/j.scitotenv.2020.143820
  145. Application and development of pyrolysis technology in petroleum oily sludge treatment vol.26, pp.1, 2021, https://doi.org/10.4491/eer.2019.460
  146. Catalytic valorization of lignocellulosics: from bulk biofuels to value‐added chemicals vol.15, pp.2, 2021, https://doi.org/10.1002/bbb.2182
  147. Biochar from Spent Malt Rootlets and Its Application to an Energy Conversion and Storage Device vol.9, pp.3, 2016, https://doi.org/10.3390/chemosensors9030057
  148. Effects of biochar, ochre and manure amendments associated with a metallicolous ecotype of Agrostis capillaris on As and Pb stabilization of a former mine technosol vol.43, pp.4, 2016, https://doi.org/10.1007/s10653-020-00592-5
  149. Expansive soil-biochar-root-water-bacteria interaction: Investigation on crack development, water management and plant growth in green infrastructure vol.30, pp.4, 2021, https://doi.org/10.1177/1056789520974416
  150. Recent Trends in Sustainable Remediation of Pb-Contaminated Shooting Range Soils: Rethinking Waste Management within a Circular Economy vol.9, pp.4, 2016, https://doi.org/10.3390/pr9040572
  151. Inherent Metal Elements in Biomass Pyrolysis: A Review vol.35, pp.7, 2016, https://doi.org/10.1021/acs.energyfuels.0c04046
  152. Recent Developments in Understanding Biochar’s Physical-Chemistry vol.11, pp.4, 2016, https://doi.org/10.3390/agronomy11040615
  153. Biochar Derived from Agricultural Wastes as a Means of Facilitating the Degradation of Azo Dyes by Sulfides vol.11, pp.4, 2021, https://doi.org/10.3390/catal11040434
  154. Biomass valorization and phytoremediation as integrated Technology for Municipal Solid Waste Management for developing economic context vol.11, pp.2, 2016, https://doi.org/10.1007/s13399-020-00818-7
  155. Development of biomass-derived biochar for agronomic and environmental remediation applications vol.11, pp.2, 2021, https://doi.org/10.1007/s13399-020-00936-2
  156. Recent advances in carbon capture storage and utilisation technologies: a review vol.19, pp.2, 2021, https://doi.org/10.1007/s10311-020-01133-3
  157. Biochar: a sustainable solution vol.23, pp.5, 2016, https://doi.org/10.1007/s10668-020-00970-0
  158. The effects of vacuum pyrolysis conditions on wood biochar monoliths for electrochemical capacitor electrodes vol.56, pp.14, 2021, https://doi.org/10.1007/s10853-021-05778-5
  159. The Effect of Biogas Purification Using Biochar from Biogas Waste on Biogas Combustion vol.884, pp.None, 2016, https://doi.org/10.4028/www.scientific.net/kem.884.104
  160. Using two dosages of biochar from shorea to improve the growth of Paraserianthes falcataria seedlings vol.749, pp.1, 2016, https://doi.org/10.1088/1755-1315/749/1/012049
  161. Remediation and improvement of 2,4-dichlorophenol contaminated soil by biochar-immobilized laccase vol.42, pp.11, 2016, https://doi.org/10.1080/09593330.2019.1677782
  162. Investigation of effectiveness of pine cone biochar activated with KOH for methyl orange adsorption and CO2 capture vol.11, pp.3, 2016, https://doi.org/10.1007/s13399-020-01063-8
  163. Investigation of effectiveness of pine cone biochar activated with KOH for methyl orange adsorption and CO2 capture vol.11, pp.3, 2016, https://doi.org/10.1007/s13399-020-01063-8
  164. Environmental Remediation of Metribuzin Herbicide by Mesoporous Carbon-Rich from Wheat Straw vol.11, pp.11, 2016, https://doi.org/10.3390/app11114935
  165. Physicochemical Properties of Activated Carbons Produced from Coffee Waste and Empty Fruit Bunch by Chemical Activation Method vol.14, pp.11, 2016, https://doi.org/10.3390/en14113002
  166. Effect of Biochar and Straw Application on Nitrous Oxide and Methane Emissions from Eutric Regosols with Different pH in Sichuan Basin: A Mesocosm Study vol.12, pp.6, 2016, https://doi.org/10.3390/atmos12060729
  167. Engineered algal biochar for contaminant remediation and electrochemical applications vol.774, pp.None, 2016, https://doi.org/10.1016/j.scitotenv.2021.145676
  168. Could biochar amendment be a tool to improve soil availability and plant uptake of phosphorus? A meta-analysis of published experiments vol.28, pp.26, 2016, https://doi.org/10.1007/s11356-021-14119-7
  169. Characterization of Steam Gasification Biochars from Lignocellulosic Agrowaste Towards Soil Applications vol.12, pp.7, 2016, https://doi.org/10.1007/s12649-020-01241-9
  170. Conazole fungicides epoxiconazole and tebuconazole in biochar amended soils: Degradation and bioaccumulation in earthworms vol.274, pp.None, 2016, https://doi.org/10.1016/j.chemosphere.2021.129700
  171. Bamboo Biochar and a Nopal-Based Biofertilizer as Improvers of Alkaline Soils with Low Buffer Capacity vol.11, pp.14, 2016, https://doi.org/10.3390/app11146502
  172. Biochar from slow pyrolysis of biological sludge from wastewater treatment: characteristics and effect as soil amendment vol.15, pp.4, 2021, https://doi.org/10.1002/bbb.2220
  173. Chemical composition controls the decomposition of organic amendments and influences the microbial community structure in agricultural soils vol.12, pp.4, 2016, https://doi.org/10.1080/17583004.2021.1947386
  174. Catalytic upcycling of waste plastics over nanocellulose derived biochar catalyst for the coupling harvest of hydrogen and liquid fuels vol.779, pp.None, 2016, https://doi.org/10.1016/j.scitotenv.2021.146463
  175. Hydrochar: A Review on Its Production Technologies and Applications vol.11, pp.8, 2016, https://doi.org/10.3390/catal11080939
  176. Potential of Biochar Derived from Agricultural Residues for Sustainable Management vol.13, pp.15, 2021, https://doi.org/10.3390/su13158147
  177. Synthesis, Characterization, and Synergistic Effects of Modified Biochar in Combination with α-Fe2O3 NPs on Biogas Production from Red Algae Pterocladia capillacea vol.13, pp.16, 2016, https://doi.org/10.3390/su13169275
  178. Biochar-Added Cementitious Materials-A Review on Mechanical, Thermal, and Environmental Properties vol.13, pp.16, 2016, https://doi.org/10.3390/su13169336
  179. Towards a Soil Remediation Strategy Using Biochar: Effects on Soil Chemical Properties and Bioavailability of Potentially Toxic Elements vol.9, pp.8, 2016, https://doi.org/10.3390/toxics9080184
  180. State-of-the-art and perspectives in the use of biochar for electrochemical and electroanalytical applications vol.23, pp.15, 2021, https://doi.org/10.1039/d1gc00843a
  181. Effect and Optimization of Process Conditions during Solvolysis and Torrefaction of Pine Sawdust Using the Desirability Function and Genetic Algorithm vol.6, pp.31, 2016, https://doi.org/10.1021/acsomega.1c00857
  182. Innovative Biochar-Based Composite Fibres from Recycled Material vol.14, pp.18, 2016, https://doi.org/10.3390/ma14185304
  183. Statistical Design of Biocarbon Reinforced Sustainable Composites from Blends of Polyphthalamide (PPA) and Polyamide 4,10 (PA410) vol.26, pp.17, 2021, https://doi.org/10.3390/molecules26175387
  184. A Review on Current Status of Biochar Uses in Agriculture vol.26, pp.18, 2016, https://doi.org/10.3390/molecules26185584
  185. Analysis of The Impact of Biochar Application on Soil Fertility and Productivity vol.830, pp.1, 2021, https://doi.org/10.1088/1755-1315/830/1/012062
  186. Sorptive and microbial riddance of micro-pollutant ibuprofen from contaminated water: A state of the art review vol.786, pp.None, 2021, https://doi.org/10.1016/j.scitotenv.2021.147327
  187. Discovering the potential of an nZVI-biochar composite as a material for the nanobioremediation of chlorinated solvents in groundwater: Degradation efficiency and effect on resident microorganisms vol.281, pp.None, 2021, https://doi.org/10.1016/j.chemosphere.2021.130915
  188. Quality assessment of bio-oil and biochar from microwave-assisted pyrolysis of corn stover using different adsorbents vol.98, pp.None, 2016, https://doi.org/10.1016/j.joei.2021.06.008
  189. Catalytic pyrolysis of sugarcane bagasse by zeolite catalyst for the production of multi-walled carbon nanotubes vol.49, pp.10, 2016, https://doi.org/10.1016/s1872-5813(21)60127-5
  190. Effect of Pyrolysis Temperature on Copper Aqueous Removal Capability of Biochar Derived from the Kelp Macrocystis pyrifera vol.11, pp.19, 2021, https://doi.org/10.3390/app11199223
  191. Iron modification to silicon-rich biochar and alternative water management to decrease arsenic accumulation in rice (Oryza sativa L.) vol.286, pp.None, 2021, https://doi.org/10.1016/j.envpol.2021.117661
  192. Effects of feedstock and pyrolysis temperature of biochar on promoting hydrogen production of ethanol-type fermentation vol.790, pp.None, 2016, https://doi.org/10.1016/j.scitotenv.2021.148206
  193. Review on upgrading organic waste to value-added carbon materials for energy and environmental applications vol.296, pp.None, 2016, https://doi.org/10.1016/j.jenvman.2021.113128
  194. Comparative study on one-step pyrolysis activation of walnut shells to biochar at different heating rates vol.7, pp.suppl7, 2021, https://doi.org/10.1016/j.egyr.2021.10.021
  195. Sustainable production of value-added sulfonated biochar by sulfuric acid carbonization reduction of rice husks vol.24, pp.None, 2021, https://doi.org/10.1016/j.eti.2021.102025
  196. Facile preparation protocol of magnetic mesoporous carbon acid catalysts via soft-template self-assembly method and their applications in conversion of xylose into furfural vol.379, pp.2209, 2016, https://doi.org/10.1098/rsta.2020.0349
  197. Bio Discarded from Waste to Resource vol.10, pp.11, 2016, https://doi.org/10.3390/foods10112652
  198. A critical review of the possible adverse effects of biochar in the soil environment vol.796, pp.None, 2021, https://doi.org/10.1016/j.scitotenv.2021.148756
  199. Torrefied herb residues in nitrogen, air and oxygen atmosphere: Thermal decomposition behavior and pyrolytic products characters vol.342, pp.None, 2016, https://doi.org/10.1016/j.biortech.2021.125991
  200. Enhancement of plasticizer adsorption by utilizing a rice bran-derived adsorbent vol.228, pp.None, 2016, https://doi.org/10.1016/j.ecoenv.2021.112972
  201. High potential of microalgal sludge biochar for a flexible all-solid-state microsupercapacitor vol.44, pp.no.pb, 2021, https://doi.org/10.1016/j.est.2021.103458
  202. Removal of triclosan from aqueous solution via adsorption by kenaf‐derived biochar: Its adsorption mechanism study via spectroscopic and experimental approaches vol.9, pp.6, 2016, https://doi.org/10.1016/j.jece.2021.106343
  203. Comparison of Novel Biochars and Steam Activated Carbon from Mixed Conifer Mill Residues vol.14, pp.24, 2016, https://doi.org/10.3390/en14248472
  204. Sustainable remediation of hazardous environmental pollutants using biochar-based nanohybrid materials vol.300, pp.None, 2021, https://doi.org/10.1016/j.jenvman.2021.113762
  205. Recent advances of thermochemical conversion processes for biorefinery vol.343, pp.None, 2022, https://doi.org/10.1016/j.biortech.2021.126109
  206. Enhanced remediation of heavy metals contaminated soils with EK-PRB using β-CD/hydrothermal biochar by waste cotton as reactive barrier vol.286, pp.p1, 2022, https://doi.org/10.1016/j.chemosphere.2021.131470
  207. Assessing the arsenic-saturated biochar recycling potential of vermitechnology: Insights on nutrient recovery, metal benignity, and microbial activity vol.286, pp.p1, 2016, https://doi.org/10.1016/j.chemosphere.2021.131660
  208. Phosphate adsorption characteristics of La(OH)3-modified, canna-derived biochar vol.286, pp.p2, 2016, https://doi.org/10.1016/j.chemosphere.2021.131773
  209. Temporal changes in arsenic and lead pools in a contaminated sediment amended with biochar pyrolyzed at different temperatures vol.287, pp.p1, 2022, https://doi.org/10.1016/j.chemosphere.2021.132102
  210. Biomass-derived carbon-based and silica-based materials for catalytic and adsorptive applications- An update since 2010 vol.287, pp.p2, 2016, https://doi.org/10.1016/j.chemosphere.2021.132222
  211. Biomass-derived carbon-based and silica-based materials for catalytic and adsorptive applications- An update since 2010 vol.287, pp.p2, 2016, https://doi.org/10.1016/j.chemosphere.2021.132222
  212. A critical review on production, modification and utilization of biochar vol.161, pp.None, 2016, https://doi.org/10.1016/j.jaap.2021.105405
  213. Role of coconut shell biochar and earthworm (Eudrilus euginea) in bioremediation and palak spinach (Spinacia oleracea L.) growth in cadmium-contaminated soil vol.302, pp.no.pa, 2016, https://doi.org/10.1016/j.jenvman.2021.114057
  214. Effect of pyrolysis conditions on environmentally persistent free radicals (EPFRs) in biochar from co-pyrolysis of urea and cellulose vol.805, pp.None, 2016, https://doi.org/10.1016/j.scitotenv.2021.150339
  215. Evaluation of oil palm fiber biochar and activated biochar for sulphur dioxide adsorption vol.805, pp.None, 2016, https://doi.org/10.1016/j.scitotenv.2021.150421
  216. Selective sequestration of perfluorinated compounds using polyaniline decorated activated biochar vol.430, pp.p2, 2022, https://doi.org/10.1016/j.cej.2021.132837
  217. Removal of pharmaceuticals from water using sewage sludge-derived biochar: A review vol.289, pp.None, 2016, https://doi.org/10.1016/j.chemosphere.2021.133196
  218. Tailoring biochar for persulfate-based environmental catalysis: Impact of biomass feedstocks vol.424, pp.no.pd, 2022, https://doi.org/10.1016/j.jhazmat.2021.127663
  219. Biochar as environmental armour and its diverse role towards protecting soil, water and air vol.806, pp.p1, 2022, https://doi.org/10.1016/j.scitotenv.2021.150444
  220. Biochar aging: Impact of pyrolysis temperature on sediment carbon pools and the availability of arsenic and lead vol.807, pp.p3, 2016, https://doi.org/10.1016/j.scitotenv.2021.151001
  221. Mechanical and Thermal Properties of Sustainable Composite Building Materials Produced by the Reprocessing of Low-Density Polyethylene, Biochar, Calcium Phosphate, and Phosphogypsum Wastes vol.34, pp.2, 2016, https://doi.org/10.1061/(asce)mt.1943-5533.0004021
  222. One-step synthesis of garlic peel derived biochar by concentrated sulfuric acid: Enhanced adsorption capacities for Enrofloxacin and interfacial interaction mechanisms vol.290, pp.None, 2016, https://doi.org/10.1016/j.chemosphere.2021.133263
  223. Agricultural waste materials for adsorptive removal of phenols, chromium (VI) and cadmium (II) from wastewater: A review vol.204, pp.no.pa, 2022, https://doi.org/10.1016/j.envres.2021.111916
  224. Recent advancements on biochars enrichment with ammonium and nitrates from wastewaters: A critical review on benefits for environment and agriculture vol.305, pp.None, 2016, https://doi.org/10.1016/j.jenvman.2021.114368
  225. Carbon materials in persulfate-based advanced oxidation processes: The roles and construction of active sites vol.426, pp.None, 2016, https://doi.org/10.1016/j.jhazmat.2021.128044
  226. Biochar and its twin benefits: Crop residue management and climate change mitigation in India vol.156, pp.None, 2016, https://doi.org/10.1016/j.rser.2021.111959
  227. The driving force for collaboration networks in environmental engineering in South Korea vol.27, pp.2, 2016, https://doi.org/10.4491/eer.2020.475
  228. Carbon mineralization in subtropical alluvial arable soils amended with sugarcane bagasse and rice husk biochars vol.32, pp.3, 2022, https://doi.org/10.1016/s1002-0160(21)60087-5