DOI QR코드

DOI QR Code

Tailoring environment friendly carbon nanostructures by surfactant mediated interfacial engineering

  • Park, Sung-Hoon (Department of Mechanical Engineering, Soongsil University) ;
  • Bae, Joonwon (Department of Applied Chemistry, Dongduk Women's University)
  • Received : 2015.04.18
  • Accepted : 2015.05.07
  • Published : 2015.10.25

Abstract

Since the discoveries of fullerene and carbon nanotube, carbon nanostructures have become one of the most exciting and expanding research topics. Owing to the extraordinary physical, chemical, electrical, and mechanical properties, carbon nanostructures have been considered as promising candidate materials for diverse energy storage/conversion systems, sensors, biological media, and electronic devices. Herein, the typical fabrication procedures for carbon nanostructures using interfacial engineering such as emulsion, dispersion, and vapor deposition are summarized. On the other hand, the characteristics and performances of those carbon nanomaterials as major components for numerous devices are briefly described. In addition, the impressive recent progresses will also be highlighted concisely.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. E.A. Heintz, F. Rodriguez-Reinoso, H. Marsh, Introduction to Carbon Technology, first ed., Publicaciones Universidad de Alicante, Spain, 1997.
  2. M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, Science of Fullerenes and Carbon Nanotubes, first ed., Academic press, San Diego, CA, 1996.
  3. S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56. https://doi.org/10.1038/354056a0
  4. A.K. Geim, K.S. Novoselov, Nat. Mater. 6 (2007) 183. https://doi.org/10.1038/nmat1849
  5. H. Nishihara, T. Kyotani, Adv. Mater. 24 (2012) 4473. https://doi.org/10.1002/adma.201201715
  6. J. Jang, Adv. Polym. Sci. 199 (2006) 189. https://doi.org/10.1007/12_075
  7. J. Jang, J.H. Oh, G. Stucky, Angew. Chem. Int. Ed. 41 (2002) 4016. https://doi.org/10.1002/1521-3773(20021104)41:21<4016::AID-ANIE4016>3.0.CO;2-G
  8. J. Jang, J.H. Oh, Adv. Mater. 16 (2004) 1650. https://doi.org/10.1002/adma.200400032
  9. J. Jang, H. Yoon, Small 1 (2005) 1195. https://doi.org/10.1002/smll.200500237
  10. H. Yoon, S. Ko, J. Jang, Chem. Commun. (2007) 1468.
  11. J. Jang, B. Lim, Angew. Chem. Int. Ed. 42 (2003) 5600. https://doi.org/10.1002/anie.200352113
  12. J. Jang, H. Ha, Chem. Mater. 15 (2003) 2109. https://doi.org/10.1021/cm034006+
  13. J. Jang, X.L. Li, J.H. Oh, Chem. Commun. (2004) 794.
  14. J. Jang, J.H. Oh, X.L. Li, J. Mater. Chem. 14 (2004) 2872. https://doi.org/10.1039/b405607h
  15. K.J. Lee, N. Shiratori, G.H. Lee, J. Miyawaki, I. Mochida, S.H. Yoon, J. Jang, Carbon 48 (2010) 4248. https://doi.org/10.1016/j.carbon.2010.07.034
  16. J. Jang, J.H. Oh, Chem. Commun. (2004) 882.
  17. J. Jang, H. Yoon, Adv. Mater. 15 (2003) 2088. https://doi.org/10.1002/adma.200305296
  18. M. Choi, J. Jang, J. Colloid Interface Sci. 325 (2008) 287. https://doi.org/10.1016/j.jcis.2008.05.047
  19. M. Choi, B. Lim, J. Jang, Macromol. Res. 16 (2008) 200. https://doi.org/10.1007/BF03218853
  20. J. Jang, B. Lim, M. Choi, Chem. Commun. (2005) 4214.
  21. K.J. Lee, S.H. Yoon, J. Jang, Small 3 (2007) 1209. https://doi.org/10.1002/smll.200700066
  22. L. Dai, D.W. Chang, J.B. Baek, W. Lu, Small 8 (2012) 1130.
  23. F. Tiarks, K. Landfester, M. Antonietti, Macromol. Chem. Phys. 202 (2001) 51. https://doi.org/10.1002/1521-3935(20010101)202:1<51::AID-MACP51>3.0.CO;2-J
  24. H.T. Ham, Y.S. Choi, N. Jeong, I.J. Chung, Polymer 46 (2005) 6308. https://doi.org/10.1016/j.polymer.2005.05.062
  25. Y.J. Yu, B. Che, Z.H. Si, L. Li, W. Chen, G. Xue, Syn. Met. 150 (2005) 271. https://doi.org/10.1016/j.synthmet.2005.02.011
  26. H. Zhang, Z. Hu, M. Li, L. Hu, S. Jiao, J. Mater. Chem., A 2 (2014) 17024. https://doi.org/10.1039/C4TA03369H
  27. N.D. Gupta, S. Maity, K.K. Chattopadhyay, J. Ind. Eng. Chem. 20 (2014) 3208. https://doi.org/10.1016/j.jiec.2013.11.067
  28. M.O. Ansari, S.P. Ansari, S.K. Yadav, T. Anwer, M.H. Cho, F. Mohammad, J. Ind. Eng. Chem. 20 (2014) 2010. https://doi.org/10.1016/j.jiec.2013.09.024
  29. N. Duc, C.H. Such, B.S. Hawkett, J. Polym. Sci., A: Polym. Chem. 51 (2013) 250. https://doi.org/10.1002/pola.26389
  30. J. Gu, P. Xiao, J. Chen, F. Liu, Y. Huang, G. Li, J. Zhang, T. Chen, J. Mater. Chem., A 2 (2014) 15268. https://doi.org/10.1039/C4TA01603C
  31. W.C. Chen, R.K. Wang, K.J. Ziegler, ACS Appl. Mater. Interfaces 1 (2009) 1821. https://doi.org/10.1021/am900369g
  32. Z. Cheng, Q. Pan, G.L. Rempel, J. Polym. Sci., A: Polym. Chem. 48 (2010) 2057. https://doi.org/10.1002/pola.23969
  33. Y. Gao, G. Song, A. Adronov, H. Li, J. Mater. Chem. C 114 (2010) 16242.
  34. R.Y. Sucheveriene, R. Rahman, M. Ovadia, D. Szczupak, G. Mechrez, M. Narkis, Polym. Adv. Technol. 25 (2014) 4. https://doi.org/10.1002/pat.3194
  35. A.R. Moghadassi, P. Karanian, S.M. Hosseini, A. Askari, S.S. Madaeni, J. Ind. Eng. Chem. 20 (2014) 2710. https://doi.org/10.1016/j.jiec.2013.10.059
  36. K.R. Reddy, B.C. Sin, C.H. Yoo, D. Sohn, Y. Lee, J. Colloid Interface Sci. 340 (2009) 160. https://doi.org/10.1016/j.jcis.2009.08.044
  37. W. Zhai, G. Li, P. Yu, L. Yang, L. Mao, J. Phys. Chem. C 117 (2013) 15183. https://doi.org/10.1021/jp404456a
  38. A.H. Bornaee, M. Manteghian, A. Rashidi, M. Alaei, M. Ershadi, J. Ind. Eng. Chem. 20 (2014) 1720. https://doi.org/10.1016/j.jiec.2013.08.022
  39. W. Chen, X. Liu, Y. Liu, Y. Bang, H.I. Kim, J. Ind. Eng. Chem. 17 (2011) 455. https://doi.org/10.1016/j.jiec.2010.10.027
  40. X. Liu, L. Wang, Z. Wang, Z. Li, J. Mater. Res. 26 (2011) 82. https://doi.org/10.1557/jmr.2010.36
  41. Z. Li, H. Guo, H. Qian, Y. Hu, Nanotechnology 21 (2010) 315105. https://doi.org/10.1088/0957-4484/21/31/315105
  42. N.N. Sinha, M. Munichandraiah, ACS Appl. Mater. Interfaces 1 (2009) 1241. https://doi.org/10.1021/am900120s
  43. K. Holmberg, B. Jonsson, B. Kronberg, B. Lindman, Surfactants and Polymers in Aqueous Solution, second ed., John Wiley and Sons, England, 2002.
  44. J. Jang, J. Bae, Angew. Chem. Int. Ed. 43 (2004) 3803. https://doi.org/10.1002/anie.200353580
  45. J. Jang, J. Bae, E. Park, Adv. Funct. Mater. 16 (2005) 1400.
  46. N. Liu, S. Zhang, R. Fu, M.S. Dresselhaus, G. Dresselhaus, J. Appl. Polym. Sci. 104 (2007) 2849. https://doi.org/10.1002/app.25715
  47. X. Wang, X. Wang, L. Liu, L. Bai, H. An, L. Zheng, L. Yi, J. Non-Cryst. Solids 357 (2011) 793. https://doi.org/10.1016/j.jnoncrysol.2010.11.015
  48. M. Kakunuri, S. Vennamalla, C.S. Sharma, RSC Adv. 5 (2015) 4747. https://doi.org/10.1039/C4RA15171B
  49. R. Venkataraman, B. Sunkara, J.E. St Dennis, J. He, V.T. John, A. Bose, Langmuir 28 (2012) 1058. https://doi.org/10.1021/la204215x
  50. M. Peer, A. Qajar, R. Rajagopalan, H.C. Foley, Carbon 51 (2013) 85. https://doi.org/10.1016/j.carbon.2012.08.015
  51. Z. Li, W. Yan, S. Dai, Carbon 42 (2004) 767. https://doi.org/10.1016/j.carbon.2004.01.044
  52. C. Tang, K. Qi, K.L. Wooley, K. Matyjaszewski, T. Kowalewski, Angew. Chem. Int. Ed. 43 (2004) 2783. https://doi.org/10.1002/anie.200353401
  53. R. Bryaskova, N. Willet, A.S. Duwez, A. Debuigne, L. Lopet, B. Gilbert, C. Jerome, R. Jerome, Chem. Asian J. 4 (2009) 1338. https://doi.org/10.1002/asia.200900130
  54. W. Kwon, S. Do, S.W. Lee, RCS Adv. 2 (2012) 11223.
  55. K. Das, S. Maiti, P.K. Das, Langmuir 30 (2014) 2448. https://doi.org/10.1021/la403835h
  56. H. Yi, H. Song, X. Chen, Langmuir 23 (2007) 3199. https://doi.org/10.1021/la0627516
  57. Y.Q. Liu, X.H. Chen, K. Zhang, B. Yi, W. Wang, L.P. Zhou, J. Inorg. Mater. 24 (2009) 993. https://doi.org/10.3724/SP.J.1077.2009.00993
  58. H. Zhang, F. Ye, H. Xu, L. Liu, H. Guo, Mater. Lett. 64 (2010) 1473. https://doi.org/10.1016/j.matlet.2010.03.065
  59. J. Jang, J. Bae, Macromol. Rapid Commun. 26 (2005) 1320. https://doi.org/10.1002/marc.200500292
  60. J. Jang, J. Bae, E. Park, Adv. Mater. 18 (2006) 354. https://doi.org/10.1002/adma.200502060
  61. D. Wu, R. Fu, M.S. Dresselhaus, G. Dresselhaus, Carbon 44 (2006) 675. https://doi.org/10.1016/j.carbon.2005.09.022
  62. P.I. Au, B. Foo, Y.K. Leong, W.L. Zhang, H.J. Choi, J. Ind. Eng. Chem. 21 (2015) 172. https://doi.org/10.1016/j.jiec.2014.07.029
  63. V. Dhand, J.S. Prasad, K.Y. Lee, Y. Anjaneyulu, J. Ind. Eng. Chem. 19 (2013) 944. https://doi.org/10.1016/j.jiec.2012.11.013
  64. Y. Wan, Y. Shi, D. Zhao, Chem. Mater. 20 (2008) 932. https://doi.org/10.1021/cm7024125
  65. D. Wang, N.L. Smith, P.M. Budd, Polym. Int. 54 (2005) 297. https://doi.org/10.1002/pi.1672
  66. M. Liu, L. Gan, F. Zhao, H. Xu, X. Fan, C. Tian, X. Wang, Z. Xu, Z. Hao, L. Chen, Carbon 45 (2007) 2710. https://doi.org/10.1016/j.carbon.2007.08.004
  67. N. Cohen, M.S. Silverstein, Polymer 52 (2011) 282. https://doi.org/10.1016/j.polymer.2010.11.026
  68. M. Mydul Alam, J. Miras, L. Adriana Perez-Carrillo, S. Vilchez, C. Solans, T. Imae, M. Ujihara, J. Esquena, Microporous Mesoporous Mater. 182 (2013) 102. https://doi.org/10.1016/j.micromeso.2013.08.015
  69. A. Szczurek, V. Fierro, A. Pizzi, A. Celzard, Carbon 74 (2014) 352. https://doi.org/10.1016/j.carbon.2014.03.047
  70. J. Jang, J. Bae, Chem. Commun. (2005) 1200.
  71. J. Jang, J. Bae, J. Non-Cryst. Solids 352 (2006) 3979. https://doi.org/10.1016/j.jnoncrysol.2006.08.013
  72. D. Gu, H. Bongard, Y. Deng, D. Feng, Z. Wu, Y. Fang, J. Mao, B. Tu, F. Schu th, D. Zhao, Adv. Mater. 22 (2010) 833. https://doi.org/10.1002/adma.200902550
  73. Y. Mun, C. Jo, T. Hyeon, J. Lee, K.S. Ha, K.W. Jun, S.H. Lee, S.W. Hong, H.I. Lee, S. Yoon, J. Lee, Carbon 64 (2013) 391. https://doi.org/10.1016/j.carbon.2013.07.092
  74. E. Kang, Y.S. Jung, G.H. Kim, J. Chun, U. Wiesner, A.C. Dillon, J.K. Kim, J. Lee, Adv. Funct. Mater. 21 (2011) 4349. https://doi.org/10.1002/adfm.201101123
  75. H. Jiang, J. Ma, C. Li, Adv. Mater. 24 (2012) 4197. https://doi.org/10.1002/adma.201104942
  76. Z. Wen, J. Liu, J. Li, Adv. Mater. 20 (2008) 743. https://doi.org/10.1002/adma.200701578
  77. Y. Jo, J.Y. Cheon, J. Yu, H.Y. Jeong, C. Han, Y. Jun, S.H. Joo, Chem. Commun. 48 (2012) 8057. https://doi.org/10.1039/c2cc30923h
  78. H.D. Asfaw, M.R. Roberts, R. Younesi, K. Edstrom, J. Mater. Chem., A 1 (2013) 13750. https://doi.org/10.1039/c3ta12680c
  79. H.D. Asfaw, M.R. Roberts, C.W. Tai, R. Younesi, M. Valvo, L. Nyholm, K. Edstrom, Nanoscale 6 (2014) 8804. https://doi.org/10.1039/C4NR01682C
  80. N. Brun, L. Edembe, S. Gounel, N. Mano, M.M. Titirici, Chem. Sustainable Chem. 6 (2013) 701. https://doi.org/10.1002/cssc.201200692
  81. U.G. Hong, H.W. Park, J. Lee, S. Hwang, I.K. Song, J. Ind. Eng. Chem. 18 (2012) 462. https://doi.org/10.1016/j.jiec.2011.11.054
  82. M.R. Malekbala, M.A. Khan, S. Hosseini, L.C. Abdullah, T.C.Y. Choong, J. Ind. Eng. Chem. 21 (2015) 369. https://doi.org/10.1016/j.jiec.2014.02.047
  83. W. Guo, X. Meng, Y.L.L. Ni, Z. Hu, R. Chen, M. Meng, Y. Wang, J. Han, M. Luo, J. Ind. Eng. Chem. 21 (2015) 340. https://doi.org/10.1016/j.jiec.2014.01.048
  84. S.E. Moraldi, J. Ind. Eng. Chem. 20 (2014) 208. https://doi.org/10.1016/j.jiec.2013.04.005
  85. J.J. Yang, J.H. Choi, H.J. Kim, M. Morita, S.G. Park, J. Ind. Eng. Chem. 19 (2013) 1648. https://doi.org/10.1016/j.jiec.2013.02.003
  86. C. Peng, G.A. Snook, D.J. Fray, M.S.P. Shaffer, G.Z. Chen, Chem. Commun. (2006) 4629.
  87. H. Guo, H. Zhu, H. Lin, J. Zhang, Colloid Polym. Sci. 286 (2008) 587. https://doi.org/10.1007/s00396-007-1828-0
  88. D.K. Kim, K.W. Oh, S.H. Kim, J. Polym. Sci., B: Polym. Phys. 46 (2008) 2255. https://doi.org/10.1002/polb.21557
  89. I. Shown, T. Imae, S. Motojima, Chem. Eng. J. 187 (2012) 380. https://doi.org/10.1016/j.cej.2012.01.128
  90. E. Armando Zaragoza-Contreras, C.A. Hernandez-Escobar, M.E. Mendoza-Duarte, S.G. Flores-Gallardo, R. Ibarra-Gomez, A. Marquez-Lucero, Polym. J. 41 (2009) 816. https://doi.org/10.1295/polymj.PJ2009090
  91. A.S. Patole, S.P. Patole, S.Y. Jung, J.B. Yoo, J.H. An, T.H. Kim, Eur. Polym. J. 48 (2012) 252. https://doi.org/10.1016/j.eurpolymj.2011.11.005
  92. N. Cohen, D.C. Samoocha, D. David, M.S. Silverstein, J. Polym. Sci., A: Polym.Chem. 51 (2013) 4369. https://doi.org/10.1002/pola.26851
  93. M. Oh, S. Kim, Electrochim. Acta 59 (2012) 196. https://doi.org/10.1016/j.electacta.2011.10.058
  94. M. Shen, D.E. Resasco, Langmuir 25 (2009) 10843. https://doi.org/10.1021/la901380b
  95. Y. Chen, M. Nie, B.L. Lucht, A. Saha, P.R. Guduru, A. Bose, ACS Appl. Mater. Interfaces 6 (2014) 4678. https://doi.org/10.1021/am404947z
  96. S.J. Gao, Z. Shi, W.B. Zhang, F. Zhang, J. Lin, ACS Nano 8 (2014) 6344. https://doi.org/10.1021/nn501851a
  97. Y. Li, L. Li, C. Li, W. Chen, M. Zeng, Appl. Catal., A: Gen. 427 (2012) 1.
  98. Y. Wang, H. Rong, B. Li, L. Xing, X. Li, W. Li, J. Power Sources 246 (2014) 213. https://doi.org/10.1016/j.jpowsour.2013.07.093
  99. J. Jang, J. Bae, Sens. Actuators, B: Chem. 122 (2007) 7. https://doi.org/10.1016/j.snb.2006.05.002
  100. J. Jang, M. Jang, H. Yoon, Adv. Mater. 17 (2005) 1616. https://doi.org/10.1002/adma.200401909
  101. J. Bae, Colloid Polym. Sci. 289 (2011) 1233. https://doi.org/10.1007/s00396-011-2449-1
  102. J. Bae, J. Solid State Chem. 184 (2011) 1749. https://doi.org/10.1016/j.jssc.2011.05.012
  103. D. Bhattacharjya, M.S. Kim, T.S. Bae, J.S. Yu, J. Power Sources 244 (2013) 799. https://doi.org/10.1016/j.jpowsour.2013.01.112
  104. Q. Zhao, T.P. Fellinger, M. Antonietti, J.Y. Yuan, Macromol. Rapid Commun. 33 (2012) 1149. https://doi.org/10.1002/marc.201200020
  105. L. You, Y. Zhang, S. Xu, ACS Appl. Mater. Interfaces 6 (2014) 15179. https://doi.org/10.1021/am503421z
  106. S.M. Yuan, J.X. Li, L.T. Yang, L.W. Su, L. Liu, Z. Zhou, ACS Appl. Mater. Interfaces 3 (2011) 705. https://doi.org/10.1021/am1010095
  107. K.C. Hwang, J. Phys., D: Appl. Phys. 43 (2010) 374001. https://doi.org/10.1088/0022-3727/43/37/374001
  108. O.S. Kwon, J. Jang, J. Bae, Curr. Org. Chem. 17 (2013) 3. https://doi.org/10.2174/138527213805289196
  109. Y.C. Chen, C. Lu, J. Ind. Eng. Chem. 20 (2014) 2521. https://doi.org/10.1016/j.jiec.2013.10.035
  110. M.A. Salam, G. Al-Zhrani, S.A. Kosa, J. Ind. Eng. Chem. 20 (2014) 572. https://doi.org/10.1016/j.jiec.2013.05.016
  111. C. Jung, A. Son, N. Her, K.D. Zoh, J. Cho, Y. Yoon, J. Ind. Eng. Chem. 21 (2015), http://dx.doi.org/10.1016/j.jiec.2014.12.035.
  112. G. Mittal, V. Dhand, K.Y. Lee, S.J. Park, W.R. Lee, J. Ind. Eng. Chem. 21 (2015) 11. https://doi.org/10.1016/j.jiec.2014.03.022
  113. J. Wu, W. Pisula, K. Mullen, Chem. Rev. 107 (2007) 718. https://doi.org/10.1021/cr068010r
  114. W.W. Liu, S.P. Chai, A.R. Mohamed, U. Hashim, J. Ind. Eng. Chem. 20 (2014) 1171. https://doi.org/10.1016/j.jiec.2013.08.028
  115. N.M. Mubarak, E.C. Abdullah, N.S. Jayakumar, J.N. Sahu, J. Ind. Eng. Chem. 20 (2014) 1186. https://doi.org/10.1016/j.jiec.2013.09.001
  116. S.H. Kim, Y.J. Noh, S.N. Kwon, B.N. Kim, B.C. Lee, S.Y. Yang, C.H. Jung, S.I. Na, J. Ind. Eng. Chem. 20 (2014), http://dx.doi.org/10.1016/j.jiec.2014.11.031.
  117. Y. Zhao, M. Arowo, W. Wu, H. Zou, J. Chen, G. Chu, J. Ind. Eng. Chem. 20 (2014), http://dx.doi.org/10.1016/j.jiec.2014.11.005.
  118. D.A. Areshkin, D. Gunlycke, C.T. White, Nano Lett. 7 (2007) 204. https://doi.org/10.1021/nl062132h
  119. T.W. Kang, Y.J. Noh, S.S. Kim, H.I. Joh, S.I. Na, J. Ind. Eng. Chem. 20 (2014), http://dx.doi.org/10.1016/j.jiec.2014.09.030.
  120. Y.M. Lin, K.A. Jenkins, A. Valdes-Garcia, J.P. Small, D.B. Farmer, P. Avouris, Nano Lett. 9 (2009) 422. https://doi.org/10.1021/nl803316h
  121. L. Gomez De Arco, Y. Zhang, C.W. Schlenker, K. Ryu, M.E. Thompson, C. Zhou, ACS Nano 4 (2010) 2865. https://doi.org/10.1021/nn901587x
  122. S.S. Park, N.J. Kim, J. Ind. Eng. Chem. 20 (2014) 1191.
  123. S. Gurunathan, J.W. Han, A.A. Dayem, V. Eppakayala, M.R. Park, D.N. Kwon, J.H. Kim, J. Ind. Eng. Chem. 20 (2014) 1280. https://doi.org/10.1016/j.jiec.2013.07.006
  124. J.H. An, S.J. Park, O.S. Kwon, J. Bae, J. Jang, ACS Nano (2013) 10563.
  125. S. Pourmand, M. Abdouss, A. Rashidi, J. Ind. Eng. Chem. 20 (2014), http://dx.doi.org/10.1016/j.jiec.2014.06.018.
  126. K. Ullah, Z.D. Meng, S. Ye, L. Zhu, W.C. Oh, J. Ind. Eng. Chem. 20 (2014) 1035. https://doi.org/10.1016/j.jiec.2013.06.040
  127. S. Mohammadi, F.A. Taromi, H. Shariatpanahi, J. Neshati, M. Hemmati, J. Ind. Eng. Chem. 20 (2014) 4124. https://doi.org/10.1016/j.jiec.2014.01.011
  128. X. Li, Y. Zhao, W. Wu, J. Chen, G. Chu, H. Zou, J. Ind. Eng. Chem. 20 (2014) 2043. https://doi.org/10.1016/j.jiec.2013.09.029
  129. G.H. Park, K.T. Kim, Y.T. Ahn, H.I. Lee, H.M. Jeong, J. Ind. Eng. Chem. 20 (2014) 4108. https://doi.org/10.1016/j.jiec.2014.01.008
  130. T.M. McCoy, P. Brown, J. Eastoe, R.F. Tabor, ACS Appl. Mater. Interfaces 7 (2015) 2124. https://doi.org/10.1021/am508565d
  131. C.J. Shih, S. Lin, M.S. Strano, D. Blankschtein, J. Phys. Chem., C 119 (2015) 1047. https://doi.org/10.1021/jp5093477
  132. L. Ma, G. Huang, W. Chen, Z. Wang, J. Ye, H. Li, D. Chen, J.Y. Lee, J. Power Sources 264 (2014) 262. https://doi.org/10.1016/j.jpowsour.2014.04.084
  133. M. Asadullah, I. Jahan, M.B. Ahmed, P. Adawiyah, N.H. Malek, M.S. Rahman, J. Ind. Eng. Chem. 20 (2014) 887. https://doi.org/10.1016/j.jiec.2013.06.019
  134. A.A. Adelodun, Y.H. Lim, Y.M. Jo, J. Ind. Eng. Chem. 20 (2014) 2130. https://doi.org/10.1016/j.jiec.2013.09.042
  135. G.M. Nabil, N.M. El-Mallah, M.E. Mahmound, J. Ind. Eng. Chem. 20 (2014) 994. https://doi.org/10.1016/j.jiec.2013.06.034
  136. J. Liu, J. Chen, L. Jiang, X. Yin, J. Ind. Eng. Chem. 20 (2014) 616. https://doi.org/10.1016/j.jiec.2013.05.024

Cited by

  1. 불소화 일라이트 및 탄소나노튜브 강화 에폭시 복합재의 기계적 및 열적 특성 vol.27, pp.3, 2015, https://doi.org/10.14478/ace.2016.1033
  2. Synthesis of an ionic polyacetylene derivative via phosphorus oxychloride-activated polymerization of 2-ethynylpyridine vol.644, pp.1, 2017, https://doi.org/10.1080/15421406.2016.1277493
  3. Surface engineered poly(dimethylsiloxane)/carbon nanotube nanocomposite pad as a flexible platform for chemical sensors vol.107, pp.None, 2015, https://doi.org/10.1016/j.compositesa.2017.12.027
  4. Methods for dispersing carbon nanotubes for nanotechnology applications: liquid nanocrystals, suspensions, polyelectrolytes, colloids and organization control vol.9, pp.1, 2015, https://doi.org/10.1007/s40089-018-0260-4
  5. Soft-nanocomposite lubricants of supramolecular gel with carbon nanotubes vol.7, pp.13, 2015, https://doi.org/10.1039/c8ta11051d
  6. Tailored functional materials as robust candidates to mitigate pesticides in aqueous matrices—a review vol.282, pp.None, 2015, https://doi.org/10.1016/j.chemosphere.2021.131056