DOI QR코드

DOI QR Code

A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites

  • Mittal, Garima (Department of Mechanical Engineering, Kyung Hee University) ;
  • Dhand, Vivek (Department of Mechanical Engineering, Kyung Hee University) ;
  • Rhee, Kyong Yop (Department of Mechanical Engineering, Kyung Hee University) ;
  • Park, Soo-Jin (Department of Chemistry, Inha University) ;
  • Lee, Wi Ro (Korean Agency for Technology and Standards)
  • Received : 2014.01.26
  • Accepted : 2014.03.10
  • Published : 2015.01.25

Abstract

Recently, carbonaceous nanofillers such as graphene and carbon nanotubes (CNTs) play a promising role due to their better structural, functional properties and broad range of applications in every field. This paper reviews the synthesis and properties of CNTs along with the use of graphene as a novel substitution to the nanotubes as fillers. This review also focuses on the issues related to the processing, dispersion and alignment of CNT within nanocomposites. Furthermore a comparative analysis has been carried out between the importance of graphene and carbon nanotubes as fillers and their substantial changes in mechanical and electrical properties of matrix.

Keywords

Acknowledgement

Supported by : Ministry of Knowledge Economy

References

  1. R.V. Kurahatti, A.O. Surendranathan, S.A. Kori, N. Singh, A.V.R. Kumar, S. Srivastava, Def. Sci. J. 60 (2010) 551. https://doi.org/10.14429/dsj.60.578
  2. C.K. Das, C.V. Sudhakar, J. Mater. Sci. Eng. B 2 (2012) 368.
  3. J.H. Lee, J. Marroquin, K.Y. Rhee, S.J. Park, D. Hui, Composites Part B 45 (2013) 682. https://doi.org/10.1016/j.compositesb.2012.05.011
  4. L. Zhang, C. Shi, K.Y. Rhee, N. Zhao, Composites Part A 43 (2012) 2241. https://doi.org/10.1016/j.compositesa.2012.08.014
  5. R.A. Hule, D.J. Pochan, MRS Bull. 32 (2007) 354. https://doi.org/10.1557/mrs2007.235
  6. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Nano. Lett. 8 (2008) 902. https://doi.org/10.1021/nl0731872
  7. C. Lee, X. Wei, J.W. Kysar, J. Hone, Science 321 (2008) 385. https://doi.org/10.1126/science.1157996
  8. M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Nano Lett. 8 (2008) 3498. https://doi.org/10.1021/nl802558y
  9. M.M.J. Treacy, T.W. Ebbesen, T.M. Gibson, Nature 381 (1996) 680.
  10. T.W. Ebbesen, H.J. Lezec, H. Hiura, J.W. Bennett, H.F. Ghaemi, T. Thio, Nature 382 (1996) 54. https://doi.org/10.1038/382054a0
  11. M.L. Minus, K. Song, Y. Zhang, J. Meng, E.C. Green, N. Tajaddod, H. Li, Materials 6 (2013) 2543. https://doi.org/10.3390/ma6062543
  12. A. Agarwal, S.R. Bakshi, D. Lahiri, Int. Mater. Rev. 55 (2010) 41. https://doi.org/10.1179/095066009X12572530170543
  13. M. Endo, T. Hayashi, Y.A. Kim, M. Terrones, M.S. Dresselhaus, Philos. Trans. R. Soc. Lond. A 362 (2004) 2223. https://doi.org/10.1098/rsta.2004.1437
  14. Y. Ma, W. Cheung, D. Wei, A. Bogozi, P.L. Chiu, L. Wang, F. Pontoriero, R. Mendelsohn, H. He, ACS Nano 2 (2008) 1197. https://doi.org/10.1021/nn800201n
  15. M.F.L.D. Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, Science 339 (2013) 535. https://doi.org/10.1126/science.1222453
  16. D. Qian, E.C. Dickey, R. Andrews, T. Rantell, Appl. Phys. Lett. 76 (2000) 2868. https://doi.org/10.1063/1.126500
  17. M.J. Biercuk, M.C. Llaguno, M. Radosavljevic, J.K. Hyun, A.T. Johnson, Appl. Phys. Lett. 80 (2002) 2767. https://doi.org/10.1063/1.1469696
  18. A. Allaoui, S. Baia, H.M. Cheng, J.B. Baia, Compos. Sci. Technol. 62 (2002) 1993. https://doi.org/10.1016/S0266-3538(02)00129-X
  19. S. Iijima, Nature 354 (1991) 56. https://doi.org/10.1038/354056a0
  20. P.M. Ajayan, O. Stephan, C. Colliex, D. Trauth, Science 265 (1994) 1212. https://doi.org/10.1126/science.265.5176.1212
  21. E.T. Thostenson, Z.F. Ren, T.W. Chou, Compos. Sci. Technol. 61 (2001) 1899. https://doi.org/10.1016/S0266-3538(01)00094-X
  22. M. Terrones, Annu. Rev. Mater. Res. 33 (2003) 419. https://doi.org/10.1146/annurev.matsci.33.012802.100255
  23. S. Iijima, T. Ichihashi, Nat. 363 (1993) 603. https://doi.org/10.1038/363603a0
  24. N.M. Mubarak, E.C. Abdullah, N.S. Jayakumar, J.N. Sahu, J. Ind. Eng. Chem. (2013), http://dx.doi.org/10.1016/j.jiec.2013.09.001.
  25. L.S. Ying, M.A.M. Salleh, H.B.M. Yusoff, S.B.A. Rashid, J.B.A. Razak, J. Ind. Eng. Chem. 17 (2013) 367.
  26. T.W. Ebbesen, P.M. Ajayan, Nature 358 (1992) 220. https://doi.org/10.1038/358220a0
  27. G.H. Taylor, J.D. Fitzgerald, L. Pang, M.A. Wilson, J. Cryst. Growth 135 (1994) 157. https://doi.org/10.1016/0022-0248(94)90737-4
  28. S. Cui, P. Scharff, C. Siegmund, D. Schneider, K. Risch, S. Klotzer, L. Spiess, H. Romanus, J. Schawohl, J. Carbon 42 (2004) 931. https://doi.org/10.1016/j.carbon.2003.12.060
  29. H. Yokomichi, M. Matoba, H. Sakima, M. Ichihara, F. Sakai, Jpn. J. Appl. Phys. 37 (1998) 6492. https://doi.org/10.1143/JJAP.37.6492
  30. K. Shimotani, K. Anazawa, H. Watanabe, M. Shimizu, Appl. Phys. A 73 (2001) 451. https://doi.org/10.1007/s003390100821
  31. T. Guo, P. Nikolaev, A. Thess, D.T. Colbert, R.E. Smalley, Chem. Phys. Lett. 243 (1995) 49. https://doi.org/10.1016/0009-2614(95)00825-O
  32. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler, D.T. Colbert, G.E. Scuseria, D. Tomanek, J.E. Fischer, R.E. Smalley, Science 273 (1996) 483. https://doi.org/10.1126/science.273.5274.483
  33. H. Dai, Surf. Sci. 500 (2002) 218. https://doi.org/10.1016/S0039-6028(01)01558-8
  34. M. Kumar, Y. Ando, J. Nanosci. Nanotechnol. 10 (2010) 3739. https://doi.org/10.1166/jnn.2010.2939
  35. Q. Zhao, T. Jiang, C. Li, H. Yin, J. Ind. Eng. Chem. 17 (2011) 218. https://doi.org/10.1016/j.jiec.2011.02.009
  36. A. Govindaraj, C.N.R. Rao, Pure Appl. Chem. 74 (2002) 1571. https://doi.org/10.1351/pac200274091571
  37. Z.F. Ren, Z.P. Huang, J.W. Xu, J.H. Wang, P. Bush, M.P. Seigal, P.N. Provencio, Science 282 (1998) 1105. https://doi.org/10.1126/science.282.5391.1105
  38. M. Lan, G. Fan, Q. Chen, F. Li, J. Ind. Eng. Chem. (2013), http://dx.doi.org/10.1016/j.jiec.2013.07.042.
  39. K.Y. Lee, W.M. Yeoh, S.P. Chai, S. Ichikawa, A.R. Mohamed, J. Ind. Eng. Chem. 18 (2012) 1504. https://doi.org/10.1016/j.jiec.2012.02.015
  40. J.S. Kim, Y.W. Jang, I.T. Im, J. Ind. Eng. Chem. 19 (2013) 1501. https://doi.org/10.1016/j.jiec.2013.01.016
  41. T.E. Thostenson, Z. Ren, T.W. Chou, Compos. Sci. Technol. 61 (2001) 1899. https://doi.org/10.1016/S0266-3538(01)00094-X
  42. O. Lourie, H.D. Wagner, J. Mater. Res. 13 (1998) 2418. https://doi.org/10.1557/JMR.1998.0336
  43. M.F. Yu, B.S. Files, S. Arepalli, R.S. Ruoff, Phys. Rev. Lett. 84 (2000) 5552. https://doi.org/10.1103/PhysRevLett.84.5552
  44. M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, R.S. Ruoff, Science 287 (2000) 637. https://doi.org/10.1126/science.287.5453.637
  45. O.A. Ageev, O.I. Il'in, A.S. Kolomiitsev, B.G. Konoplev, M.V. Rubashkina, V.A. Smirnov, A.A. Fedotov, Ross. Nanotekhnol. 7 (2012) 47. https://doi.org/10.1134/S1995078012010028
  46. B.I. Yakobson, C.J. Brabec, J. Bernholc, Phys. Rev. Lett. 76 (1996) 2511. https://doi.org/10.1103/PhysRevLett.76.2511
  47. G. Overney, W. Zhong, D. Tomanek, Z. Fur Phys, D Atoms Mol. Clust. 27 (1993) 93. https://doi.org/10.1007/BF01436769
  48. J.W. Mintmire, B.I. Dunlap, C.T. White, Phys. Rev. Lett. 68 (1992) 631. https://doi.org/10.1103/PhysRevLett.68.631
  49. N. Hamada, S. Sawada, A. Oshiyama, Phys. Rev. Lett. 68 (1992) 1579. https://doi.org/10.1103/PhysRevLett.68.1579
  50. S.J. Tans, M.H. Devoret, A. Thess, R.E. Smalley, L.J. Geerlings, Nature 386 (1997) 474. https://doi.org/10.1038/386474a0
  51. T.W. Odom, J. Huang, P. Kim, C.M. Lieber, Nature 391 (1998) 62. https://doi.org/10.1038/34145
  52. J.C. Charlier, J.P. Issi, J. Phys. Chem. Sol. 57 (1996) 957. https://doi.org/10.1016/0022-3697(95)00382-7
  53. H. Dai, E.W. Wong, C.M. Lieber, Science 272 (1996) 523. https://doi.org/10.1126/science.272.5261.523
  54. S. Berber, Y. Kwon, D. Tomanek, Phys. Rev. Lett. 84 (2000) 4613. https://doi.org/10.1103/PhysRevLett.84.4613
  55. J. Hone, M. Whitney, C. Piskoti, A. Zettl, Phys. Rev. B 59 (1999) 2514. https://doi.org/10.1103/PhysRevB.59.R2514
  56. H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, Y. Achiba, Synth. Met. 103 (1999) 2555. https://doi.org/10.1016/S0379-6779(98)00278-1
  57. F. Du, J.E. Fischer, K.I. Winey, J. Polym. Sci. B 41 (2003) 3333. https://doi.org/10.1002/polb.10701
  58. M.S.P. Shaffer, A.H. Winlde, Adv. Mater. 11 (1999) 937. https://doi.org/10.1002/(SICI)1521-4095(199908)11:11<937::AID-ADMA937>3.0.CO;2-9
  59. B. Safadi, R. Andrews, E.A. Grulke, J. Appl. Polym. Sci. 84 (2002) 2660. https://doi.org/10.1002/app.10436
  60. J. Jang, J. Bae, S.H. Yoon, J. Mater. Chem. 13 (2003) 676. https://doi.org/10.1039/b212190e
  61. X. Gong, J. Liu, S. Baskaran, R.D. Voise, S. Young, Chem. Mater. 12 (2000) 1049. https://doi.org/10.1021/cm9906396
  62. S. Cui, R. Canet, A. Derre, Carbon 41 (2003) 797. https://doi.org/10.1016/S0008-6223(02)00405-0
  63. R. Sen, B. Zhao, D. Perea, Nano Lett. 4 (2004) 459. https://doi.org/10.1021/nl035135s
  64. Y. Dror, W. Salalha, R.L. Khalfin, Y. Cohen, A.L. Yarin, E. Zussman, Langmuir 19 (2003) 7012. https://doi.org/10.1021/la034234i
  65. R. Andrews, D. Jacques, D. Qian, Acc. Chem. Res. 35 (2002) 1008. https://doi.org/10.1021/ar010151m
  66. D.E. Hill, Y. Lin, A.M. Rao, L.F. Allard, Y.P. Sun, Macromolecules 35 (2002) 9466. https://doi.org/10.1021/ma020855r
  67. P. Potschke, A.R. Bhattacharyya, A. Janke, Eur. Polym. J. 40 (2004) 137. https://doi.org/10.1016/j.eurpolymj.2003.08.008
  68. J.Y. Kim, S.H. Kim, J. Polym. Sci. B 44 (2006) 1062. https://doi.org/10.1002/polb.20728
  69. H. Haggenmueller, W. Zhou, J.E. Fischer, J. Nanosci. Nanotechnol. 3 (2003) 105. https://doi.org/10.1166/jnn.2003.173
  70. C.A. Cooper, D. Ravich, D. Lips, J. Mayer, H.D. Wagner, Compos. Sci. Technol. 62 (2002) 1105. https://doi.org/10.1016/S0266-3538(02)00056-8
  71. M. Moniruzzaman, K.I. Winey, Macromolecules 39 (2006) 5194. https://doi.org/10.1021/ma060733p
  72. J. Sandler, S. Pegel, M. Cadek, F. Gojny, E.M. Van, J. Lohmar, W.J. Blau, K. Schulte, A.H. Windle, M.S.P. Shaffer, Polymer 45 (2004) 2001. https://doi.org/10.1016/j.polymer.2004.01.023
  73. J.C. Kearns, R.L. Shambaugh, J. Appl. Polym. Sci. 86 (2002) 2079. https://doi.org/10.1002/app.11160
  74. S.T. Kim, H.J. Choi, S.M. Hong, Colloid Polym. Sci. 285 (2007) 593. https://doi.org/10.1007/s00396-006-1599-z
  75. J.H. Yoo, Y.C. Jung, N.G. Sahoo, J. Macromol. Sci. B 45 (2006) 441. https://doi.org/10.1080/00222340600767471
  76. T.M. Wu, S.H. Lin, J. Polym. Sci. 44 (2006) 6449. https://doi.org/10.1002/pola.21724
  77. M. Kang, S.J. Myung, H.J. Jin, Polymer 47 (2006) 3961. https://doi.org/10.1016/j.polymer.2006.03.073
  78. Z. Liu, M. Yu, J. Wang, F. Li, L. Cheng, J. Guo, Q. Huang, Y. Zhou, J. Yi, Y. Liu, W. Yang, J. Ind. Eng. Chem. (2013), http://dx.doi.org/10.1016/j.jiec.2013.08.034.
  79. R. Haggenmueller, F. Du, J.E. Fischer, Nano Lett. 7 (2007) 1178. https://doi.org/10.1021/nl062868e
  80. A. Moisala, Q. Li, I.A. Kinloch, A.H. Windle, Compos. Sci. Technol. 66 (2006) 1285. https://doi.org/10.1016/j.compscitech.2005.10.016
  81. X.D. Li, H.S. Gao, W.A. Scrivens, Nanotechnology 15 (2004) 1416. https://doi.org/10.1088/0957-4484/15/11/005
  82. P.C. Ma, B.Z. Tang, J.K. Kim, Carbon 46 (2008) 1497. https://doi.org/10.1016/j.carbon.2008.06.048
  83. C.A. Martin, J. Sandler, A.H. Windle, M. Schwarz,W. Bauhofer, K. Schulte, Polymer 46 (2005) 877. https://doi.org/10.1016/j.polymer.2004.11.081
  84. P.C. Ma, A.N. Siddiqui, G. Marom, K.J. Kim, Composites Part A 41 (2010) 1345. https://doi.org/10.1016/j.compositesa.2010.07.003
  85. T.W. Ebbesen, P.M. Ajayan, H. Hiura, K. Tanigaki, Nature 367 (1994) 519. https://doi.org/10.1038/367519a0
  86. P.M. Ajayan, T.W. Ebbesen, T. Ichihashi, S. Iijima, K. Tanigaki, H. Hiura, Nature 362 (1993) 522. https://doi.org/10.1038/362522a0
  87. P. Hou, C. Liu, Y. Tong, S. Xu, M. Liu, H. Chenga, J. Mater. Res. 16 (2001) 2526. https://doi.org/10.1557/JMR.2001.0346
  88. K. Schulte, F.H. Gojny, B. Fiedler, J.K.W. Sandler, W. Bauhofer, Polymer Composites, Springer, US, 2005p. 3.
  89. M.N. Tchoul, W.T. Ford, G. Lolli, D.E. Resasco, S. Arepalli, Chem. Mater. 19 (2007) 5765. https://doi.org/10.1021/cm071758l
  90. P.C. Rosales, V. Ortega, A.A. Luejea, S. Bolloa, M. Gonzalezb, A. Ansonb, M.T. Martinezb, Electrochim. Acta 62 (2012) 163. https://doi.org/10.1016/j.electacta.2011.12.043
  91. S. Hussain, P. Jha, A. Chouksey, R. Raman, S.S. Islam, T. Islam, P.K. Choudhary, Harsh, J. Modern Phys. 2 (2011) 538. https://doi.org/10.4236/jmp.2011.26063
  92. C. Kahattha, P. Woointranont, T. Chodjarusawad, W. Pecharapa, J. Microsc. Soc. Thail. 24 (2010) 133.
  93. R. Olejnik, P. Slobodian, P. Riha, P. Saha, J. Mater. Sci. Res. 1 (2012) 101.
  94. Y. Feng, H. Zhang, Y. Hou, T.P. McNicholas, D. Yuan, S. Yang, L. Ding, W. Feng, J. Liu, ACS Nano 2 (2008) 1634. https://doi.org/10.1021/nn800388g
  95. J.M. Lee, S.J. Kim, J.W. Kim, P.H. Kang, Y.C. Nho, Y.S. Lee, J. Ind. Eng. Chem. 15 (2009) 66. https://doi.org/10.1016/j.jiec.2008.08.010
  96. V.N. Khabashesku, W.E. Billups, J.L. Margrave, Acc. Chem. Res. 35 (2002) 1087. https://doi.org/10.1021/ar020146y
  97. M. Holzinger, O. Vostrowsky, A. Hirsch, F. Hennrich, M. Kappes, R. Weiss, F. Jellen, Angew. Chem. 40 (2001) 4002. https://doi.org/10.1002/1521-3773(20011105)40:21<4002::AID-ANIE4002>3.0.CO;2-8
  98. H. Hu, B. Zhao, M. Hamon, K. Kamaras, M.E. Itkis, R.C. Haddon, J. Am. Chem. Soc. 125 (2003) 14893. https://doi.org/10.1021/ja0356737
  99. M. Holzinger, J. Abraham, P. Whelan, R. Graupner, L. Ley, F. Hennrich, N. Kappes, A. Hirsch, J. Am. Chem. Soc. 125 (2003) 8566. https://doi.org/10.1021/ja029931w
  100. Y. Ying, R.K. Saini, F. Liang, A.K. Sadana, W.E. Billups, Org. Lett. 5 (2003) 1471. https://doi.org/10.1021/ol0342453
  101. G. Guo, L. Wu, C. Wang, J. Fang. Prog. Chem. 21 (2009) 2084.
  102. F. Abbaszadeh, O. Moradi, M. Norouzi, O. Sabzevari, J. Ind. Eng. Chem. (2013), http://dx.doi.org/10.1016/j.jiec.2013.11.025.
  103. N. Tagmatarchis, M. Prato, J. Mater. Chem. 14 (2004) 437. https://doi.org/10.1039/b314039c
  104. E. Vazquez, M. Prato, Pure Appl. Chem. 82 (2010) 853. https://doi.org/10.1351/PAC-CON-09-10-40
  105. C.M. Moyon, N. Izard, E. Doris, C. Mioskowski, J. Am. Chem. Soc. 128 (2006) 6552. https://doi.org/10.1021/ja060802f
  106. D.W. Steuerman, A. Star, R. Narizzano, H. Choi, R.S. Ries, C. Nicolini, J.F. Stoddart, J.R. Heath, J. Phys. Chem. B 106 (2002) 3124. https://doi.org/10.1021/jp014326l
  107. A. Hsiao, S. Tsai, M. Hsu, S. Chang, Nanoscale Res. Lett. 7 (2012) 240. https://doi.org/10.1186/1556-276X-7-240
  108. L. Li, R.J. Nicholas, C. Chen, R.C. Darton, S.C. Baker, Nanotechnology 16 (2005) S202. https://doi.org/10.1088/0957-4484/16/5/012
  109. T.J. Simmons, D. Hashim, R. Vajtai, P.M. Ajayan, J. Am. Chem. Soc. 129 (2007) 10088. https://doi.org/10.1021/ja073745e
  110. N.R. Tummala, A. Striolo, ACS Nano 3 (2009) 595. https://doi.org/10.1021/nn8007756
  111. V. Datsyuk, P. Landois, J. Fitremann, A. Peigney, A.M. Galibert, B. Soula, E. Flahaut, J. Mater. Chem. 19 (2009) 2729. https://doi.org/10.1039/b814122n
  112. H. Xin, A.T. Woolley, Nanotechnology 16 (2005) 2238. https://doi.org/10.1088/0957-4484/16/10/044
  113. R.J. Chen, Y. Zhang, D. Wang, H. Dai, J. Am. Chem. Soc. 123 (2001) 3838. https://doi.org/10.1021/ja010172b
  114. J. Chen, M.A. Hamon, H. Hu, Y.S. Chen, A.M. Rao, P.C. Eklund, R.C. Haddon, Science 282 (1998) 95. https://doi.org/10.1126/science.282.5386.95
  115. M. Monthioux, B.W. Smith, B. Burteaux, A. Claye, J.E. Fischer, D.E. Luzzi, Carbon 39 (2001) 1251. https://doi.org/10.1016/S0008-6223(00)00249-9
  116. K. Song, Y. Zhang, J. Meng, E.C. Green, N. Tajaddod, H. Li, M.L. Minus, Materials 6 (2013) 2543. https://doi.org/10.3390/ma6062543
  117. L. Schadler, Nat. Mater. 6 (2007) 257. https://doi.org/10.1038/nmat1873
  118. M. Cadek, J.N. Coleman, V. Barron, Appl. Phys. Lett. 81 (2002) 5123. https://doi.org/10.1063/1.1533118
  119. D.K. Woo, B.C. Kim, S.J. Lee, Kor. Aust. Rheol. J. 21 (2009) 185.
  120. R.Andrews, D. Jacques,M.Minot, T.Rantell, Macromol. Mater. Eng. 287 (2002) 395. https://doi.org/10.1002/1439-2054(20020601)287:6<395::AID-MAME395>3.0.CO;2-S
  121. P. Potschke, A.R. Bhattacharyya, A. Janke, S. Pegel, A. Leonhardt, C. Taschner, M. Ritschel, S. Roth, B. Hornbostel, J. Cech, Fuller. Nanotubes Carbon Nanostruct. 13 (2005) 211. https://doi.org/10.1081/FST-200039267
  122. M. Kim, Y.B. Park, O.I. Okoli, C. Zhang, Compos. Sci. Technol. 69 (2009) 335. https://doi.org/10.1016/j.compscitech.2008.10.019
  123. Q. Zhao, Y. Shen, M. Ji, L. Zhang, T. Jiang, C. Li, J. Ind. Eng. Chem. 20 (2014) 544-548. https://doi.org/10.1016/j.jiec.2013.04.040
  124. L. Chen, X.J. Pang, Z.L. Yu, Mater. Sci. Eng. A 457 (2007) 287. https://doi.org/10.1016/j.msea.2007.01.107
  125. T.V. Kosmidou, A.S. Vatalis, C.G. Delides, E. Logakis, P. Pissis, G.C. Papanicolaou, eXPRESS Polym. Lett. 2 (2008) 364. https://doi.org/10.3144/expresspolymlett.2008.43
  126. P.C. Ma, J.K. Kim, B.Z. Tang, Compos. Sci. Technol. 67 (2007) 2965. https://doi.org/10.1016/j.compscitech.2007.05.006
  127. C.V. Santos, A.L.M. Hernandez, F.T. Fisher, R. Ruoff, V.M. Castan, Chem. Mater. 15 (2003) 4470. https://doi.org/10.1021/cm034243c
  128. T. Fukushima, A. Kosaka, Y. Yamamoto, T. Aimiya, S. Notazawa, T. Takigawa, T. Inabe, T. Aida, Small 2 (2006) 554. https://doi.org/10.1002/smll.200500404
  129. B. Jiang, C. Liu, C. Zhang, B. Wang, Z. Wang, Composites Part B 38 (2007) 24. https://doi.org/10.1016/j.compositesb.2006.05.002
  130. H.G. Chae, M.L. Minus, S. Kumar, Polymer 47 (2006) 3494. https://doi.org/10.1016/j.polymer.2006.03.050
  131. R. Haggenmueller, H.H. Gommans, A.G. Rinzler, J.E. Fischer, K.I. Winey, Chem. Phys. Lett. 330 (2000) 219. https://doi.org/10.1016/S0009-2614(00)01013-7
  132. S.M. Park, Y.M. Lim, C.H. Kim, D.J. Kim, W.J. Moon, J.H. Kim, J.S. Lee, C.K. Hong, G. Seo, J. Ind. Eng. Chem. 19 (2013) 712. https://doi.org/10.1016/j.jiec.2012.10.012
  133. N. Grossiord, J. Loos, O. Regev, C.E. Koning, Chem. Mater. 18 (2006) 1089. https://doi.org/10.1021/cm051881h
  134. W. Zhang, A.A.D. Sanij, R.S. Blackburn, J. Mater. Sci. 42 (2007) 3408. https://doi.org/10.1007/s10853-007-1688-5
  135. W. Bauhofer, J.Z. Kovacs, Compos. Sci. Technol. 69 (2009) 1486. https://doi.org/10.1016/j.compscitech.2008.06.018
  136. G.T. Mohanraj, T.K. Chaki, A. Chakraborty, D. Khastgir, J. Appl. Polym. Sci. 92 (2004) 2179. https://doi.org/10.1002/app.20227
  137. J.K.W. Sandler, J.E. Kirk, I.A. Kinloch, M.S.P. Shaffer, A.H. Winlde, Polymer 44 (2003) 5893. https://doi.org/10.1016/S0032-3861(03)00539-1
  138. J. Li, J.K. Kim, M.L. Sham, G. Marom, Compos. Sci. Technol. 67 (2007) 296. https://doi.org/10.1016/j.compscitech.2006.08.009
  139. T. Souier, S. Santos, A.A. Ghaferi, M. Stefancich, M. Chiesa, Nanoscale Res. Lett. 7 (2012) 630. https://doi.org/10.1186/1556-276X-7-630
  140. T. Souier, M. Stefancich, M. Chiesa, Nanotechnology 23 (40) (2012) 405704. https://doi.org/10.1088/0957-4484/23/40/405704
  141. Q. Zhang, S. Rastogi, D. Chen, D. Lippits, P.J. Lemstra, Carbon 44 (2006) 778. https://doi.org/10.1016/j.carbon.2005.09.039
  142. H.C. Li, S.Y. Lu, S.H. Syue, W.K. Hsu, S.C. Chang, Appl. Phys. Lett. 93 (2008) 033104. https://doi.org/10.1063/1.2963475
  143. J.O. Aguilar, J.R.B. Quijano, F. Aviles, eXPRESS Polym. Lett. 4 (2010) 292. https://doi.org/10.3144/expresspolymlett.2010.37
  144. X.J. He, J.H. Du, Z. Ying, H.M. Chenga, Appl. Phys. Lett. 86 (2005) 062112. https://doi.org/10.1063/1.1863452
  145. A.B. Sulong, N. Muhamad, J. Sahari, R. Ramli, B.M. Deros, Eur. J. Sci. Res. 29 (2009) 13.
  146. T. Connolly, R.C. Smith, Y. Hernandez, Y. Gun'ko, J.N. Coleman, J.D. Carey, Small 5 (2009) 826. https://doi.org/10.1002/smll.200801094
  147. Y.W. Jin, J.E. Jung, Y.J. Park, J.H. Choi, D.S. Jung, H.W. Lee, S.H. Park, N.S. Lee, J.M. Kim, T.Y. Ko, S.J. Lee, S.Y. Hwang, J.H. You, J.B. Yoo, C.Y. Park, J. Appl. Phys. 92 (2002) 1065. https://doi.org/10.1063/1.1489067
  148. N.D. Gupta, S. Maity, K.K. Chattopadhyay, J. Ind. Eng. Chem. (2013), http://dx.doi.org/10.1016/j.jiec.2013.11.067.
  149. I. Lee, S. Lee, H. Kim, H. Lee, Y. Kim, Open Phys. Chem. J. 4 (2010) 1. https://doi.org/10.2174/1874067701004010001
  150. M. Sibinski, A. Jakubowska, K. Znajdek, M. Sloma, B. Guzowski, Opt. Appl. XLI (2011) 375.
  151. I. Dinca, C. Ban, A. Stefan, G. Pelin, INCAS Bull. 4 (2012) 73. https://doi.org/10.13111/2066-8201.2012.4.3.7
  152. M.H. Al-Saleh, U. Sundararaj, Carbon 47 (2009) 1738. https://doi.org/10.1016/j.carbon.2009.02.030
  153. Y.Y. Kim, H. Kim, Y.S. Lee, J. Ind. Eng. Chem. 18 (2012) 392. https://doi.org/10.1016/j.jiec.2011.11.103
  154. H. Jeon, J.H. Park, M.Y. Shon, J. Ind. Eng. Chem. 19 (2013) 849. https://doi.org/10.1016/j.jiec.2012.10.030
  155. S.K. Lee, B.C. Bai, J.S. Im, S.J. In, Y.S. Lee, J. Ind. Eng. Chem. 16 (2010) 891. https://doi.org/10.1016/j.jiec.2010.09.014
  156. M. Jin, X. Feng, L. Feng, T. Sun, J. Zhai, T. Li, L. Jiang, Adv. Mater. 17 (2005) 1977. https://doi.org/10.1002/adma.200401726
  157. M.O. Ansari, S.P. Ansari, S.K. Yadav, T. Anwer, M.H. Cho, F. Mohammad, J. Ind. Eng. Chem. (2013), http://dx.doi.org/10.1016/j.jiec.2013.09.024.
  158. S. Sattari, A. Reyhani, M.R. Khanlari, M. Khabazian, H.J. Heydari, J. Ind. Eng. Chem. (2013), http://dx.doi.org/10.1016/j.jiec.2013.08.029.
  159. Z. Rajabi, A.R. Moghadass, S.M. Hosseini, M. Mohammadi, J. Ind. Eng. Chem. 19 (2013) 347. https://doi.org/10.1016/j.jiec.2012.08.023
  160. A. Khan, A.A.P. Khan, A.M. Asiri, M.A. Rub, N. Azum, S.B. Khan, H.M. Marwani, J. Ind. Eng. Chem. (2013), http://dx.doi.org/10.1016/j.jiec.2013.10.005.
  161. V. Dhand, K.Y. Rhee, H.J. Kim, D.H. Jung, J. Nanomater. (2013) 14.
  162. J.R. Potts, D.R. Dreyer, C.W. Bielawski, R.S. Ruoff, Polymer 52 (2011) 5. https://doi.org/10.1016/j.polymer.2010.11.042
  163. W.W. Liu, S.P. Chai, A.R. Mohamed, U. Hashim, J. Ind. Eng. Chem. (2013), http://dx.doi.org/10.1016/j.jiec.2013.08.028.
  164. G. Chen, W. Weng, D. Wu, C. Wu, J. Lu, P. Wang, X. Chen, Carbon 42 (2004) 753. https://doi.org/10.1016/j.carbon.2003.12.074
  165. S. Basu, P. Bhattacharyya, Sens. Actuators B: Chem. 173 (2012) 1.
  166. V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, S. Seal, Prog. Mater. Sci. 56 (2011) 1178. https://doi.org/10.1016/j.pmatsci.2011.03.003
  167. S. Goenka, V. Sant, S. Sant, J. Controlled Release 173 (2014) 75. https://doi.org/10.1016/j.jconrel.2013.10.017
  168. H.X. Kong, Curr. Opin. Solid State Mater. Sci. 17 (2013) 31. https://doi.org/10.1016/j.cossms.2012.12.002
  169. E.E. Tkalya, M. Ghislandi, G. With, C.E. Koning, Curr. Opin. Colloid Interface Sci. 17 (2012) 225. https://doi.org/10.1016/j.cocis.2012.03.001
  170. T. Kuilla, S. Bhadra, D. Yao, N.H. Kim, S. Bose, J.H. Lee, Prog. Polym. Sci. 35 (2010) 1350. https://doi.org/10.1016/j.progpolymsci.2010.07.005
  171. K.K. Sadasivuni, D. Ponnamma, S. Thomas, Y. Grohens, Prog. Polym. Sci. 39 (2014) 749-780. https://doi.org/10.1016/j.progpolymsci.2013.08.003
  172. M. Terrones, A.R. Botello-Mendez, J. Campos-Delgado, F. Lopez-Urias, Y.I. Vega-Cantu, F.J. Rodriguez-Macias, A.L. Elias, E. Munoz-Sandoval, A.G. Cano-Marquez, J.C. Charlier, H. Terrones, Nano Today 5 (2010) 351. https://doi.org/10.1016/j.nantod.2010.06.010
  173. Z.S. Wu, G. Zhou, L.C. Yin, W. Ren, F. Li, H.M. Cheng, Nano Energy 1 (2012) 107.
  174. L. Lin, M. Rong, F. Luo, D. Chen, Y. Wang, X. Chen, TrAC Trends Anal. Chem. 54 (2014) 83. https://doi.org/10.1016/j.trac.2013.11.001
  175. M.S. Artiles, C.S. Rout, T.S. Fisher, Adv. Drug Deliv. Rev. 63 (2011) 1352. https://doi.org/10.1016/j.addr.2011.07.005
  176. L. Grande, V.T. Chundi, D. Wei, C. Bower, P. Andrew, T. Ryhanen, Particuology 10 (2012) 1. https://doi.org/10.1016/j.partic.2011.12.001
  177. S.C. Tjong, Mater. Sci. Eng. R Rep. 74 (2013) 281. https://doi.org/10.1016/j.mser.2013.08.001
  178. Z. Li, M. He, D. Xu, Z. Liu, J. Photochem. Photobio. C: Photochem. Rev. 18 (2014) 1. https://doi.org/10.1016/j.jphotochemrev.2013.10.002
  179. C.T.J. Low, F.C. Walsh, M.H. Chakrabarti, M.A. Hashim, M.A. Hussain, Carbon 54 (2013) 1. https://doi.org/10.1016/j.carbon.2012.11.030
  180. G. Kucinskis, G. Bajars, J. Kleperis, J. Power Sources 240 (2013) 66. https://doi.org/10.1016/j.jpowsour.2013.03.160
  181. R. Sitko, B. Zawisza, E. Malicka, TrAC Trends Anal. Chem. 51 (2013) 33. https://doi.org/10.1016/j.trac.2013.05.011
  182. A.M. Pinto, I.C. Goncalves, F.D. Magalhaes, Colloids Surf. B: Biointerfaces 111 (2013) 188. https://doi.org/10.1016/j.colsurfb.2013.05.022
  183. Z. Spitalsky, D. Tasis, K. Papagelis, C. Galiotis, Prog. Polym. Sci. 35 (2010) 357. https://doi.org/10.1016/j.progpolymsci.2009.09.003
  184. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306 (2004) 666. https://doi.org/10.1126/science.1102896
  185. K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Proc. Natl. Acad. Sci. U. S. A. 102 (2005) 10451. https://doi.org/10.1073/pnas.0502848102
  186. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Carbon 45 (2007) 1558. https://doi.org/10.1016/j.carbon.2007.02.034
  187. D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R.D. Piner, S. Stankovich, I. Jung, D.A. Field, C.A. Ventrice Jr., R.S. Ruoff, Carbon 47 (2009) 145. https://doi.org/10.1016/j.carbon.2008.09.045
  188. G. Eda, C. Mattevi, H. Yamaguchi, H. Kim, M. Chhowalla, J. Phys. Chem. C 113 (2009) 15768. https://doi.org/10.1021/jp9051402
  189. M. Lotya, Y. Hernandez, P.J. King, R.J. Smith, V. Nicolosi, L.S. Karlsson, F.M. Blighe, S. De, Z. Wang, I.T. McGovern, G.S. Duesberg, J.N. Coleman, J. Am. Chem. Soc. 131 (2009) 3611. https://doi.org/10.1021/ja807449u
  190. Y. Si, E.T. Samulski, Nano Lett. 8 (2008) 1679. https://doi.org/10.1021/nl080604h
  191. C. Nethravathi, M. Rajamathi, Carbon 46 (2008) 1994. https://doi.org/10.1016/j.carbon.2008.08.013
  192. Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, Y.K. GunKo, J.J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A.C. Ferrari, J.N. Coleman, Nat. Nanotechnol. 3 (2008) 563. https://doi.org/10.1038/nnano.2008.215
  193. L.M. Viculis, J.J. Mack, O.M. Mayer, H.T. Hahn, R.B. Kaner, J. Mater. Chem. 15 (2005) 974. https://doi.org/10.1039/b413029d
  194. M. Choucair, P. Thordarson, J.A. Stride, Nat. Nanotechnol. 4 (2009) 30. https://doi.org/10.1038/nnano.2008.365
  195. M.G. Rybin, A.S. Pozharov, E.D. Obraztsova, Phys. Status Solidi C 7 (2010) 2785. https://doi.org/10.1002/pssc.201000241
  196. E. Rokuta, Y. Hasegawa, A. Itoh, K. Yamashita, T. Tanaka, S. Otani, C. Oshima, Surf. Sci. 427 (1999) 97.
  197. H. Shioyama, J. Mater. Sci. Lett. 20 (2001) 499. https://doi.org/10.1023/A:1010907928709
  198. R.S. Ruoff, J. Mater. Chem. 21 (2011), 3272-3272. https://doi.org/10.1039/c1jm90012a
  199. W.D. Heer, C. Berger, X. Wu, P.N. First, E.H. Conrad, X. Li, T. Li, M. Sprinkle, J. Hass, M.L. Sadowski, M. Potemski, G. Martinez, Solid State Commun. 143 (2007) 92. https://doi.org/10.1016/j.ssc.2007.04.023
  200. Y.M. Chang, H. Kim, J.H. Lee, Y.W. Song, Appl. Phys. Lett. 97 (2010) 211102. https://doi.org/10.1063/1.3521257
  201. Z. Tang, J. Zhuang, X. Wang, Langmuir 26 (2010) 9045. https://doi.org/10.1021/la9049082
  202. A. Shukla, R. Kumar, J. Mazher, A. Balan, Solid State Commun. 149 (2009) 718. https://doi.org/10.1016/j.ssc.2009.02.007
  203. S. Park, J. An, A.J.R. Potts, A. Velamakanni, S. Murali, R.S. Ruoff, Carbon 49 (2011) 3019. https://doi.org/10.1016/j.carbon.2011.02.071
  204. D. Gunlycke, P.E. Sheehan, Science 331 (2011) 1146. https://doi.org/10.1126/science.1200779
  205. X. Lu, M. Yu, H. Huang, R.S. Ruoff, Nanotechnology 10 (1999) 269. https://doi.org/10.1088/0957-4484/10/3/308
  206. A. Dimiev, D.V. Kosynkin, A. Sinitskii, A. Slesarev, Z. Sun, J.M. Tour, Science 331 (2011) 1168. https://doi.org/10.1126/science.1199183
  207. J.W. May, Saurf. Sci. 17 (1969) 267-270. https://doi.org/10.1016/0039-6028(69)90227-1
  208. J.C. Shelton, H.R. Patil, J.M. Blakely, Surf. Sci. 43 (1974) 493-520. https://doi.org/10.1016/0039-6028(74)90272-6
  209. M. Eizenberg, J.M. Blakely, Surf. Sci. 82 (1979) 228-236. https://doi.org/10.1016/0039-6028(79)90330-3
  210. P.R. Somani, S.P. Somani, M. Umeno, Chem. Phys. Lett. 430 (2006) 56-59. https://doi.org/10.1016/j.cplett.2006.06.081
  211. H. Cao, Q. Yu, R. Colby, D. Pandey, C.S. Park, J. Lian, D. Zemlyanov, I. Childres, V. Drachev, E.A. Stach, M. Hussain, H. Li, S.S. Pei, Y.P. Chen, J. Appl. Phys. 107 (2010) 044310-044317. https://doi.org/10.1063/1.3309018
  212. S. Bhaviripudi, X. Jia, M.S. Dresselhaus, J. Kong, Nano Lett. 10 (2010) 4128-4133. https://doi.org/10.1021/nl102355e
  213. K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi, B.H. Hong, Nature 457 (2009) 706. https://doi.org/10.1038/nature07719
  214. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, R.S. Ruoff, Science 324 (2009) 1312. https://doi.org/10.1126/science.1171245
  215. S.J. Chae, F. Gunes, K.K. Kim, E.S. Kim, G.H. Han, S.M. Kim, H.J. Shin, S.M. Yoon, J.Y. Choi, M.H. Park, C.W. Yang, D. Pribat, Y.H. Lee, Adv. Mater. 21 (2009) 2328. https://doi.org/10.1002/adma.200803016
  216. S. Lee, K. Lee, Z. Zhong, Nano Lett. 10 (2010) 4702. https://doi.org/10.1021/nl1029978
  217. Y. Lee, S. Bae, H. Jang, S. Jang, S.E. Zhu, S.H. Sim, Y.I. Song, B.H. Hong, J.H. Ahn, Nano Lett. 10 (2010) 490. https://doi.org/10.1021/nl903272n
  218. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Nano Lett. 9 (2009) 30. https://doi.org/10.1021/nl801827v
  219. Z.M. Dang, J.K. Yuan, J.W. Zha, T. Zhou, S.T. Li, G.H. Hu, Prog. Mater. Sci. 57 (2012) 660. https://doi.org/10.1016/j.pmatsci.2011.08.001
  220. R. Sengupta, M. Bhattacharya, S. Bandyopadhyay, A.K. Bhowmick, Prog. Polym. Sci. 36 (2011) 638. https://doi.org/10.1016/j.progpolymsci.2010.11.003
  221. S.Y. Yang, W.N. Lin, Y.L. Huang, H.W. Tien, J.Y. Wang, C.C.M. Ma, S.M. Li, Y.S. Wang, Carbon 49 (2011) 793. https://doi.org/10.1016/j.carbon.2010.10.014
  222. X. Zhao, Q. Zhang, D. Chen, Macromolecule 43 (2010) 2357. https://doi.org/10.1021/ma902862u
  223. M.A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z.Z. Yu, N.A. Koratkar, ACS Nano 3 (2009) 3884. https://doi.org/10.1021/nn9010472
  224. M.A. Rafiee, W. Lu, A.V. Thomas, A. Zandiatashbar, J. Rafiee, J.M. Tour, N.A. Koratkar, ACS Nano 4 (2010) 7415. https://doi.org/10.1021/nn102529n
  225. T. Zhou, J.W. Zha, Y. Hou, D. Wang, J. Zhao, Z.M. Dang, ACS Appl. Mater. Interfaces 3 (2011) 4557. https://doi.org/10.1021/am201454e
  226. D. Li, M.B. Muller, S. Gilje, R.B. Kaner, G.G. Wallace, Nat. Nanotechnol. 3 (2008) 101. https://doi.org/10.1038/nnano.2007.451
  227. W. Li, A. Dichiara, J. Bai, Compos. Sci. Technol. 74 (2013) 221. https://doi.org/10.1016/j.compscitech.2012.11.015
  228. S. Zhang, S. Yin, C. Rong, P. Huo, Z. Jiang, G. Wang, Eur. Polym. J. 49 (2013) 3125. https://doi.org/10.1016/j.eurpolymj.2013.07.011
  229. Z. Zheng, Z. Wang, Q. Feng, F. zhang, Y. Du, C. Wang, Mater. Chem. Phys. 138 (2013) 350. https://doi.org/10.1016/j.matchemphys.2012.11.067
  230. H. Pang, C. Chen, Y.C. Zhang, P.G. Ren, D.X. Yan, Z.M. Li, Carbon 49 (2011) 1980. https://doi.org/10.1016/j.carbon.2011.01.023
  231. S. Chandrasekaran, G. Faiella, L.A.S.A. Prado, F. Tolle, R. Mulhaupt, K. Schulte, Composites Part A 49 (2013) 51. https://doi.org/10.1016/j.compositesa.2013.02.008
  232. Y. Hwang, M. Kim, J. Kim, Composites Part A 55 (2013) 195. https://doi.org/10.1016/j.compositesa.2013.08.010
  233. M.M. Gallego, M.M. Bernal, M. Hernandez, R. Verdejo, M.A.L. Manchado, Eur. Polym. J. 49 (2013) 1347. https://doi.org/10.1016/j.eurpolymj.2013.02.033
  234. L. Zhao, F. Zhao, B. Zeng, Electrochim. Acta 115 (2014) 247. https://doi.org/10.1016/j.electacta.2013.10.181
  235. C. Li, G. Shi, Electrochim. Acta 56 (2011) 10737. https://doi.org/10.1016/j.electacta.2010.12.081
  236. S. Yu, Y. Jiang, C. Wang, Electrochim. Acta 114 (2013) 430. https://doi.org/10.1016/j.electacta.2013.10.123
  237. L. Zhao, F. Zhao, B. Zeng, Sens. Actuators B 176 (2013) 818. https://doi.org/10.1016/j.snb.2012.10.003
  238. Y. Zhao, Y. Huang, Q. Wang, Ceram. Int. 39 (2013) 6861. https://doi.org/10.1016/j.ceramint.2013.02.020
  239. S. Lee, E.S. Oh, J. Power Sources 244 (2013) 721. https://doi.org/10.1016/j.jpowsour.2012.11.079
  240. D.C. Lee, H.N. Yang, S.H. Park, W.J. Kim, J. Membr. Sci. 452 (2014) 20. https://doi.org/10.1016/j.memsci.2013.10.018
  241. H.S. Park, M.H. Lee, R.Y. Hwang, O.K. Park, K. Jo, T. Lee, B.S. Kim, H.K. Song, Nano Energy 3 (2014) 1.
  242. D. Kundu, F. Krumeich, R. Nesper, J. Power Sources 236 (2013) 112. https://doi.org/10.1016/j.jpowsour.2013.02.050
  243. W. Guo, J. Su, Y.H. Li, L.J. Wan, Y.G. Guo, Electrochim. Acta 72 (2012) 81. https://doi.org/10.1016/j.electacta.2012.03.162
  244. Y. Liu, L. Zhu, Y. Zhang, H. Tang, Sens. Actuators B: Chem. 171-172 (2012) 1151. https://doi.org/10.1016/j.snb.2012.06.054
  245. Y. Zeng, Y. Zhou, L. Kong, T. Zhou, G. Shi, Biosens. Bioelectron. 45 (2013) 25. https://doi.org/10.1016/j.bios.2013.01.036
  246. W. Lian, S. Liu, J. Yu, X. Xing, J. Li, M. Cui, J. Huang, Biosens. Bioelectron. 38 (2012) 163. https://doi.org/10.1016/j.bios.2012.05.017
  247. Y. Mao, Y. Bao, S. Gan, F. Li, L. Niu, Biosens. Bioelectron. 28 (2011) 291. https://doi.org/10.1016/j.bios.2011.07.034
  248. F. Wang, L. Zhu, J. Zhang, Sens. Actuators B: Chem. 192 (2014) 642. https://doi.org/10.1016/j.snb.2013.11.037
  249. Y.J. Jeon, J.M. Yun, D.Y. Kim, S.I. Na, S.S. Kim, Sol. Energy Mater. Sol. Cells 105 (2012) 96. https://doi.org/10.1016/j.solmat.2012.05.024
  250. Z. Liu, L. Liu, H. Li, Q. Dong, S. Yao, A.B. Kidd IV, X. Zhang, J. Li, W. Tian, Sol. Energy Mater. Sol. Cells 97 (2012) 28-33. https://doi.org/10.1016/j.solmat.2011.09.023
  251. G. Yue, J. Wu, Y. Xiao, J. Lin, M. Huang, Z. Lan, L. Fan, Energy 54 (2013) 315-321.
  252. M. Sookhakian, Y.M. Amin, S. Baradaran, M.T. Tajabadi, A.M. Golsheikh, W.J. Basirun, Thin Solid Films 552 (2014) 204-211. https://doi.org/10.1016/j.tsf.2013.12.019
  253. R. Li, L. Liu, F. Yang, Chem. Eng. J. 229 (2013) 460. https://doi.org/10.1016/j.cej.2013.05.089
  254. C.A. Crock, A.R. Rogensues, W. Shan, V.V. Tarabara, Water Res. 47 (2013) 3984. https://doi.org/10.1016/j.watres.2012.10.057
  255. S. Zinadini, A.A. Zinatizadeh, M. Rahimi, V. Vatanpour, H. Zangeneh, J. Memb. Sci. 453 (2014) 292. https://doi.org/10.1016/j.memsci.2013.10.070
  256. J. Zhang, Z. Xu, M. Shan, B. Zhou, Y. Li, B. Li, J. Niu, X. Qian, J. Memb. Sci. 448 (2013) 81. https://doi.org/10.1016/j.memsci.2013.07.064
  257. A. Gupta, A.J. Akhtar, S.K. Saha, Mater. Chem. Phys. 140 (2013) 616. https://doi.org/10.1016/j.matchemphys.2013.04.015
  258. S. Sahoo, S. Dhibar, G. Hatui, P. Bhattacharya, C.K. Das, Polymer 54 (2013) 1033. https://doi.org/10.1016/j.polymer.2012.12.042
  259. P. Tamilarasan, S. Ramaprabhu, Energy 51 (2013) 374. https://doi.org/10.1016/j.energy.2012.11.037
  260. M. Kumar, K. Singh, S.K. Dhawan, K. Tharanikkarasu, J.S. Chung, B.S. Kong, E.J. Kim, S.H. Hur, Chem. Eng. J. 231 (2013) 397. https://doi.org/10.1016/j.cej.2013.07.043
  261. S.K. Tripathi, R. Goyal, K.C. Gupta, P. Kumar, Carbon 51 (2013) 224. https://doi.org/10.1016/j.carbon.2012.08.047
  262. D. Depan, J. Shah, R.D.K. Misra, Mater. Sci. Eng. C 31 (2011) 1305. https://doi.org/10.1016/j.msec.2011.04.010
  263. T. Kavitha, I.K. Kang, S.Y. Park, Coll. Surf. B: Biointerfaces 115 (2014) 37. https://doi.org/10.1016/j.colsurfb.2013.11.022
  264. R. Justin, B. Chen, Carbohydr. Polym. 103 (2014) 70. https://doi.org/10.1016/j.carbpol.2013.12.012
  265. H.C. Tian, J.Q. Liu, D.X. Wei, X.Y. Kang, C. Zhang, J.C. Du, B. Yang, X. Chen, H.Y. Zhu, Y.N. Li, C.S. Yang, Biomater 35 (2014) 2120-2129. https://doi.org/10.1016/j.biomaterials.2013.11.058
  266. G. Yang, J. Su, J. Gao, X. Hu, C. Geng, Q. Fu, J. Supercrit. Fluids 73 (2013) 1. https://doi.org/10.1016/j.supflu.2012.11.004
  267. S. Sayyar, E. Murray, B.C. Thompson, S. Gambhir, D.L. Officer, G.G. Wallace, Carbon 52 (2013) 296. https://doi.org/10.1016/j.carbon.2012.09.031
  268. R.K. Layek, A.K. Nandi, Polymer 54 (2013) 5087. https://doi.org/10.1016/j.polymer.2013.06.027
  269. H. Zhang, L. Feng, B. Liu, C. Tong, C. Lu, Dyes Pig. 101 (2014) 122. https://doi.org/10.1016/j.dyepig.2013.09.040
  270. Z. Liu, J.T. Robinson, X. Sun, H. Dai, J. Am. Chem. Soc. 130 (2008) 10876. https://doi.org/10.1021/ja803688x
  271. J.R. Choi, Y.S. Lee, S.J. Park, J. Ind. Eng. Chem. (2013), http://dx.doi.org/10.1016/j.jiec.2013.12.029.
  272. W. Dong, H.C. Liu, S.J. Park, F.L. Jin, J. Ind. Eng. Chem. (2013), http://dx.doi.org/10.1016/j.jiec.2013.06.053.
  273. S. Kim, Y.S. Chung, F.L. Jin, S.J. Park, J. Ind. Eng. Chem. (2013), http://dx.doi.org/10.1016/j.jiec.2013.12.032.
  274. H. Fu, C. Yan, W. Zhou, H. Huang, J. Ind. Eng. Chem. (2013), 10.1016/j.jiec.2013.08.009.
  275. A.A. Khan, U. Baig, J. Ind. Eng. Chem. 18 (2012) 1937. https://doi.org/10.1016/j.jiec.2012.05.008
  276. A. Gholami, A.R. Moghadassi, S.M. Hosseini, S. Shabani, F. Gholami, J. Ind. Eng. Chem. (2013), http://dx.doi.org/10.1016/j.jiec.2013.07.041.
  277. K.S. Jeon, J. Yun, Y.S. Lee, H.I. Kim, J. Ind. Eng. Chem. 18 (2012) 487. https://doi.org/10.1016/j.jiec.2011.11.068
  278. C.H. Ahn, Y.B. Baek, C.H. Lee, S.O. Kim, S.H. Kim, S.H. Lee, S.H. Kim, S.S. Bae, J.B. Park, J.Y. Yoon, J. Ind. Eng. Chem. 18 (2012) 1551. https://doi.org/10.1016/j.jiec.2012.04.005
  279. Sambasivudu, Y. Mahajan, Nanotech Insight April (2012) 6.
  280. F.T. Johra, J.W. Lee, W.G. Jung, J. Ind. Eng. Chem. (2013), http://dx.doi.org/10.1016/j.jiec.2013.11.022.
  281. Y. Choi, S. Cho, Y.S. Lee, J. Ind. Eng. Chem. (2013), http://dx.doi.org/10.1016/j.jiec.2013.12.052.

Cited by

  1. Experimental Investigation of Static and Dynamic Characteristics of Multiwall Carbon Nanotubes Reinforced Polypropylene vol.592, pp.None, 2015, https://doi.org/10.4028/www.scientific.net/amm.592-594.927
  2. An optimization approach for producing carbon nanotubes involving economic and safety objectives vol.17, pp.8, 2015, https://doi.org/10.1007/s10098-015-0942-9
  3. Latex routes to graphene-based nanocomposites vol.6, pp.30, 2015, https://doi.org/10.1039/c5py00490j
  4. Epoxy/graphene nanocomposites - processing and properties: a review vol.5, pp.90, 2015, https://doi.org/10.1039/c5ra13897c
  5. Epoxy/graphene nanocomposites - processing and properties: a review vol.5, pp.90, 2015, https://doi.org/10.1039/c5ra13897c
  6. A Simple Synthesis, Characterization, and Properties of Poly(methyl methacrylate) Grafted CdTe Nanocrystals vol.618, pp.1, 2015, https://doi.org/10.1080/15421406.2015.1076305
  7. Fabrication of CNT Dispersion Fluid by Wet-Jet Milling Method for Coating on Bipolar Plate of Fuel Cell vol.2015, pp.None, 2015, https://doi.org/10.1155/2015/315017
  8. Rheology, Mechanical Properties, and Thermal Stability of Maleated Polyethylene Filled with Nanoclays vol.2015, pp.None, 2015, https://doi.org/10.1155/2015/792080
  9. Synthesis of Nanocarbons Using a Large Volume AC Plasma Reactor vol.1747, pp.None, 2015, https://doi.org/10.1557/opl.2015.341
  10. Effect of sonication on high temperature properties of bituminous binders reinforced with nano-additives vol.75, pp.None, 2015, https://doi.org/10.1016/j.conbuildmat.2014.11.021
  11. Carbon nanotubes synthesis using diffusion and premixed flame methods: a review vol.16, pp.1, 2015, https://doi.org/10.5714/cl.2015.16.1.001
  12. A review on solid adsorbents for carbon dioxide capture vol.23, pp.None, 2015, https://doi.org/10.1016/j.jiec.2014.09.001
  13. Graphene synthesis: a Review vol.33, pp.3, 2015, https://doi.org/10.1515/msp-2015-0079
  14. Scratch behaviour of graphene alumina nanocomposites vol.114, pp.suppl1, 2015, https://doi.org/10.1179/1743676115y.0000000030
  15. In situ thermal synthesis of novel polyimide nanocomposite films containing organo-modified layered double hydroxide: morphological, thermal and mechanical properties vol.39, pp.10, 2015, https://doi.org/10.1039/c5nj01640a
  16. Segmental nitrogen doping and carboxyl functionalization of multi‐walled carbon nanotubes vol.252, pp.11, 2015, https://doi.org/10.1002/pssb.201552163
  17. Influence of structure of amines on the properties of amines‐modified reduced graphene oxide/polyimide composites vol.133, pp.34, 2015, https://doi.org/10.1002/app.43820
  18. Emulsion polymerization method for polyaniline-multiwalled carbon nanotube nanocomposites as supercapacitor materials vol.20, pp.12, 2016, https://doi.org/10.1007/s10008-016-3309-1
  19. Joule effect self-heating of epoxy composites reinforced with graphitic nanofillers vol.23, pp.9, 2015, https://doi.org/10.1007/s10965-016-1092-4
  20. Behavior of protruding lateral plane graphene sheets in liquid dodecane: molecular dynamics simulations vol.18, pp.11, 2015, https://doi.org/10.1007/s11051-016-3645-1
  21. Flame retardant and smoke suppression mechanism of multi-walled carbon nanotubes on high-impact polystyrene nanocomposites vol.25, pp.7, 2016, https://doi.org/10.1007/s13726-016-0453-5
  22. Effect of Multi Wall Carbon Nanotube Content on The Electrical and Rheological Properties of Polypropylene-based Nanocomposites vol.78, pp.None, 2016, https://doi.org/10.1051/matecconf/20167801092
  23. A Review on Polymer/Cement Composite with Carbon Nanofiller and Inorganic Filler vol.55, pp.12, 2015, https://doi.org/10.1080/03602559.2016.1163594
  24. Graphene oxide/multi-walled carbon nanotubes as nanofeatured scaffolds for the assisted deposition of nanohydroxyapatite: characterization and biological evaluation vol.11, pp.None, 2016, https://doi.org/10.2147/ijn.s106339
  25. Polymer Nanocomposites—A Comparison between Carbon Nanotubes, Graphene, and Clay as Nanofillers vol.9, pp.4, 2015, https://doi.org/10.3390/ma9040262
  26. Effect of Interface Modified by Graphene on the Mechanical and Frictional Properties of Carbon/Graphene/Carbon Composites vol.9, pp.6, 2015, https://doi.org/10.3390/ma9060492
  27. Synergistic effect of lactic acid oligomers and laminar graphene sheets on the barrier properties of polylactide nanocomposites obtained by the in situ polymerization pre‐incorporation method vol.133, pp.2, 2015, https://doi.org/10.1002/app.42661
  28. Influence of adding multiwalled carbon nanotubes on the adhesive strength of composite epoxy/sol-gel materials vol.13, pp.2, 2016, https://doi.org/10.1007/s11998-015-9761-5
  29. Molecular imprinting method for fabricating novel glucose sensor: Polyvinyl acetate electrode reinforced by MnO2/CuO loaded on graphene oxide nanoparticles vol.194, pp.None, 2016, https://doi.org/10.1016/j.foodchem.2015.07.128
  30. Effective approaches for the preparation of organo-modified multi-walled carbon nanotubes and the corresponding MWCNT/polymer nanocomposites vol.48, pp.4, 2015, https://doi.org/10.1038/pj.2015.132
  31. Electrical and electromagnetic interference shielding characteristics of GNP/UHMWPE composites vol.49, pp.19, 2015, https://doi.org/10.1088/0022-3727/49/19/195302
  32. Carbon Nanotubes Filled with Different Ferromagnetic Alloys Affect the Growth and Development of Rice Seedlings by Changing the C:N Ratio and Plant Hormones Concentrations vol.11, pp.6, 2015, https://doi.org/10.1371/journal.pone.0157264
  33. 불소화 일라이트 및 탄소나노튜브 강화 에폭시 복합재의 기계적 및 열적 특성 vol.27, pp.3, 2015, https://doi.org/10.14478/ace.2016.1033
  34. High Strength Electrospun Nanofiber Mats via CNT Reinforcement: A Review vol.29, pp.4, 2016, https://doi.org/10.7234/composres.2016.29.4.186
  35. Carbon Nanostructures in Bone Tissue Engineering vol.10, pp.None, 2015, https://doi.org/10.2174/1874325001610010877
  36. International Collaboration Patterns and Effecting Factors of Emerging Technologies vol.11, pp.12, 2015, https://doi.org/10.1371/journal.pone.0167772
  37. Influence of external pressure on conductivity of systems based on polyethylene oxide and carbon nanotubes vol.23, pp.4, 2015, https://doi.org/10.15407/fm23.04.398
  38. Production routes, electromechanical properties and potential application of layered nanomaterials and 2D nanopolymeric composites-a review vol.93, pp.9, 2015, https://doi.org/10.1007/s00170-017-0764-5
  39. Separation of metal ions via capillary electrophoresis using a pseudostationary phase microfunctionalized with carbon nanotubes vol.184, pp.6, 2015, https://doi.org/10.1007/s00604-017-2172-9
  40. Improved dispersion of attapulgite nanorods in polymer with graphene oxide nanosheets vol.52, pp.3, 2017, https://doi.org/10.1007/s10853-016-0431-5
  41. Effect of graphene dispersion on the equilibrium structure and deformation of graphene/eicosane composites as surrogates for graphene/polyethylene composites: a molecular dynamics simulation vol.52, pp.10, 2015, https://doi.org/10.1007/s10853-017-0802-6
  42. Molecular dynamics simulations of the graphene sheet aggregation in dodecane vol.19, pp.6, 2015, https://doi.org/10.1007/s11051-017-3893-8
  43. Graphene oxide-based silsesquioxane-crosslinked networks - synthesis and rheological behavior vol.7, pp.35, 2015, https://doi.org/10.1039/c7ra02764h
  44. Current Research Status and Application of Polymer/Carbon Nanofiller Buckypaper: A Review vol.56, pp.16, 2015, https://doi.org/10.1080/03602559.2017.1289407
  45. Current Research Status and Application of Polymer/Carbon Nanofiller Buckypaper: A Review vol.56, pp.16, 2015, https://doi.org/10.1080/03602559.2017.1289407
  46. Synthesis and characterization of photoluminescent Eu(III) coordinated with poly(2-hydroxyethyl methacrylate) grafted SiO2 nanoparticles via surface RAFT polymerization vol.644, pp.1, 2015, https://doi.org/10.1080/15421406.2016.1277476
  47. Preparation of poly(styrene-alt-maleic anhydride) grafted multi-walled carbon nanotubes for pH-responsive release of doxorubicin vol.654, pp.1, 2015, https://doi.org/10.1080/15421406.2017.1358041
  48. Dispersion of Carbon Nanotubes in Solutions of Oxyethylated Isononylphenols vol.90, pp.11, 2015, https://doi.org/10.1134/s1070427217110118
  49. Pressure-sensitive properties of carbon nanotubes/bismuth sulfide composite materials vol.7, pp.None, 2015, https://doi.org/10.1177/1847980417707087
  50. Influence of Carbon Fillers on Thermal Properties and Flammability of Polymeric Nanocomposites vol.32, pp.3, 2015, https://doi.org/10.3139/217.3316
  51. In Situ Wire Drawing of Phosphate Glass in Polymer Matrices for Material Extrusion 3D Printing vol.2017, pp.None, 2017, https://doi.org/10.1155/2017/1954903
  52. Electrical conductivity and transparency of polymer hybrid nanocomposites based on poly(trimethylene terephthalate) containing single walled carbon nanotubes and expanded graphite vol.134, pp.1, 2017, https://doi.org/10.1002/app.44370
  53. Electrical, Mechanical, and Thermal Properties of LDPE Graphene Nanoplatelets Composites Produced by Means of Melt Extrusion Process vol.9, pp.1, 2015, https://doi.org/10.3390/polym9010011
  54. The effect of a semi‐industrial masterbatch process on the carbon nanotube agglomerates and its influence in the properties of thermoplastic carbon nanotube composites vol.55, pp.2, 2015, https://doi.org/10.1002/polb.24258
  55. Influence of Cryogenic Attrition Ball Milling on the Particle Size of Microcrystalline Cellulose at Different Moisture Contents vol.885, pp.None, 2015, https://doi.org/10.4028/www.scientific.net/msf.885.202
  56. Investigation of the structure and thermal behaviour of polymer liquid crystal / single wall carbon nanotubes nanocomposite vol.780, pp.None, 2015, https://doi.org/10.1088/1742-6596/780/1/012011
  57. Influence of rigid segment content on the piezoresistive behavior of multiwall carbon nanotube/segmented polyurethane composites vol.134, pp.6, 2017, https://doi.org/10.1002/app.44448
  58. Nanocarbons in Electrospun Polymeric Nanomats for Tissue Engineering: A Review vol.9, pp.2, 2015, https://doi.org/10.3390/polym9020076
  59. Polymer Nanocomposites with Cellulose Nanocrystals Featuring Adaptive Surface Groups vol.18, pp.2, 2015, https://doi.org/10.1021/acs.biomac.6b01639
  60. Effect of Thermal Expansion and Sonication on Mechanical Properties and Adhesive Toughness Measurement of Polymer/Graphene Composite vol.889, pp.None, 2015, https://doi.org/10.4028/www.scientific.net/msf.889.14
  61. Electric Property of Aligned Carbon Nanotubes/Ultraviolet Curing Resin Composites and Alignment Simulation of Carbon Nanotubes with Traveling Electric Field Application vol.66, pp.3, 2015, https://doi.org/10.2472/jsms.66.232
  62. Preparation of a functional reduced graphene oxide and carbon nanotube hybrid and its reinforcement effects on the properties of polyimide composites vol.134, pp.11, 2017, https://doi.org/10.1002/app.44575
  63. Electrical conductivity enhancement in thermoplastic polyurethane-graphene nanoplatelet composites by stretch-release cycles vol.110, pp.12, 2015, https://doi.org/10.1063/1.4978865
  64. Reinforcing mechanism of graphene at atomic level: Friction, crack surface adhesion and 2D geometry vol.114, pp.None, 2015, https://doi.org/10.1016/j.carbon.2016.12.034
  65. Achieving high performance corrosion and wear resistant epoxy coatings via incorporation of noncovalent functionalized graphene vol.114, pp.None, 2017, https://doi.org/10.1016/j.carbon.2016.12.044
  66. Deposition Thickness Modeling and Parameter Identification for a Spray-Assisted Vacuum Filtration Process in Additive Manufacturing vol.139, pp.4, 2017, https://doi.org/10.1115/1.4034890
  67. Effective thermal and mechanical properties of short carbon fiber/natural rubber composites as a function of mechanical loading vol.117, pp.None, 2015, https://doi.org/10.1016/j.applthermaleng.2017.02.004
  68. Polystyrene/multi-wall carbon nanotube composite and its foam assisted by ultrasound vibration vol.53, pp.3, 2015, https://doi.org/10.1177/0021955x16651253
  69. Synthesis of Heterocyclic Compounds Catalyzed by Metal/Metal Oxide-Multiwall Carbon Nanotube Nanocomposites : Metal/metal oxide doped carbon nanotubes in synthesis of heterocyclic compound vol.64, pp.6, 2015, https://doi.org/10.1002/jccs.201600864
  70. Effects of ultrasonic vibration on the rheological behavior of high‐density polyethylene composites filled with flash aluminum flake pigments vol.134, pp.23, 2015, https://doi.org/10.1002/app.44906
  71. Water purification by polymer nanocomposites: an overview vol.3, pp.2, 2015, https://doi.org/10.1080/20550324.2017.1329983
  72. Water purification by polymer nanocomposites: an overview vol.3, pp.2, 2015, https://doi.org/10.1080/20550324.2017.1329983
  73. Cluster microstructure and local elasticity of carbon‐epoxy nanocomposites studied by impulse acoustic microscopy vol.57, pp.7, 2017, https://doi.org/10.1002/pen.24608
  74. Influence of nanoparticles on the interfacial properties of fiber-reinforced-epoxy composites vol.98, pp.None, 2017, https://doi.org/10.1016/j.compositesa.2017.03.007
  75. Mechanical properties, thermal and crystallization behavior of different surface-modified silica nanoparticle-filled PA66 composites vol.37, pp.6, 2015, https://doi.org/10.1515/polyeng-2016-0192
  76. Mechanical properties, thermal and crystallization behavior of different surface-modified silica nanoparticle-filled PA66 composites vol.37, pp.6, 2015, https://doi.org/10.1515/polyeng-2016-0192
  77. Graphene nanoribbons (GNRs) by unzipping MWCNTs for the improvement of PMMA microcellular foams vol.134, pp.32, 2015, https://doi.org/10.1002/app.45182
  78. Thermal Properties of Graphene Filled Polymer Composite Thermal Interface Materials vol.302, pp.9, 2017, https://doi.org/10.1002/mame.201700068
  79. Influence of Hydroxyl and Carboxyl Functionalized Multi-Walled Carbon Nanotube and Filler Loading on the Tensile Properties of Epoxy Composites vol.264, pp.None, 2015, https://doi.org/10.4028/www.scientific.net/ssp.264.58
  80. Rheological characterization of nanostructured material based on Polystyrene-b-poly(ethylene-butylene)-b-polystyrene (SEBS) block copolymer: Effect of block copolymer composition and nanoparticle geom vol.149, pp.None, 2017, https://doi.org/10.1016/j.compscitech.2017.06.022
  81. Putting Rings around Carbon Nanotubes vol.23, pp.52, 2017, https://doi.org/10.1002/chem.201702992
  82. Tuning Electrical and Thermal Properties in Epoxy/Glass Composites by Graphene-Based Interphase vol.1, pp.2, 2015, https://doi.org/10.3390/jcs1020012
  83. Mechanical properties, impact fracture behavior, and morphology of long-polyimide-fiber-reinforced poly(butylene terephthalate) composites vol.51, pp.24, 2015, https://doi.org/10.1177/0021998316687031
  84. Crosslinking hydroxylated reduced graphene oxide with RAFT-CTA: A nano-initiator for preparation of well-defined amino acid-based polymer nanohybrids vol.504, pp.None, 2017, https://doi.org/10.1016/j.jcis.2017.06.007
  85. Structural Behavior of Cylindrical Polystyrene‐block‐Poly(ethylene‐butylene)‐block‐Polystyrene (SEBS) Triblock Copolymer Containing MWCNTs: On the Influence of Nanopartic vol.218, pp.22, 2015, https://doi.org/10.1002/macp.201700231
  86. Melt extrudate swell behavior of multi‐walled carbon nanotubes filled‐polypropylene composites vol.38, pp.11, 2015, https://doi.org/10.1002/pc.23829
  87. Overcoming Catalyst Residue Inhibition of the Functionalization of Single-Walled Carbon Nanotubes via the Billups–Birch Reduction vol.9, pp.43, 2015, https://doi.org/10.1021/acsami.7b12857
  88. 1D and 2D oxidized carbon nanomaterials on epoxy matrix: performance of composites over the same processing conditions vol.4, pp.11, 2015, https://doi.org/10.1088/2053-1591/aa99e3
  89. Processing, thermal and mechanical behaviour of PEI/MWCNT/carbon fiber nanostructured laminate vol.4, pp.11, 2015, https://doi.org/10.1088/2053-1591/aa99f8
  90. Electrical properties of flexible graphene reinforced polyimide composites vol.134, pp.41, 2017, https://doi.org/10.1002/app.45372
  91. Generation of Polymer Nanocomposites through Shear-Driven Aggregation of Binary Colloids vol.9, pp.11, 2015, https://doi.org/10.3390/polym9110619
  92. A flexible plasma-treated silver-nanowire electrode for organic light-emitting devices vol.7, pp.None, 2015, https://doi.org/10.1038/s41598-017-16721-7
  93. Reduced graphene oxide composites with water soluble copolymers having tailored lower critical solution temperatures and unique tube-like structure vol.7, pp.None, 2015, https://doi.org/10.1038/srep44508
  94. Effects of multi-walled carbon nanotube and nanosilica on tensile properties of woven carbon fabric-reinforced epoxy composites fabricated using VARIM vol.51, pp.30, 2017, https://doi.org/10.1177/0021998317699982
  95. Investigation of Electrical and Thermal Properties of Reduced Graphene Oxide-Multiwalled Carbon Nanotubes/PMMA Hybrid Nanocomposite vol.215, pp.5, 2018, https://doi.org/10.1002/pssa.201700476
  96. Atomistic modeling of graphene/hexagonal boron nitride polymer nanocomposites: a review vol.8, pp.3, 2018, https://doi.org/10.1002/wcms.1346
  97. Carbon fiber/epoxy composites: effect of zinc sulphide coated carbon nanotube on thermal and mechanical properties vol.75, pp.4, 2015, https://doi.org/10.1007/s00289-017-2115-y
  98. Cellulose nanofibres as biomaterial for nano-reinforcement of poly[styrene-(ethylene-co-butylene)-styrene] triblock copolymer vol.25, pp.1, 2018, https://doi.org/10.1007/s10570-017-1567-4
  99. Recent trends in graphene materials synthesized by CVD with various carbon precursors vol.53, pp.2, 2018, https://doi.org/10.1007/s10853-017-1694-1
  100. Recycled polyethylene terephthalate/carbon nanotube composites with improved processability and performance vol.53, pp.9, 2015, https://doi.org/10.1007/s10853-018-2014-0
  101. Polymer/carbon nanotubes nanocomposites: relationship between interfacial adhesion and performance of nanocomposites vol.53, pp.14, 2015, https://doi.org/10.1007/s10853-018-2335-z
  102. Graphene-Reinforced Aluminum Matrix Composites: A Review of Synthesis Methods and Properties vol.70, pp.6, 2018, https://doi.org/10.1007/s11837-018-2810-7
  103. High Velocity Impact Response of Basalt Fibers/Epoxy Composites Containing Graphene Nanoplatelets vol.19, pp.11, 2015, https://doi.org/10.1007/s12221-018-8007-4
  104. Impregnation of carbonaceous nanofibers into glassy polymer-based composite membrane for CO2 separation vol.26, pp.11, 2015, https://doi.org/10.1016/j.cjche.2018.05.023
  105. High-Performance and Lightweight Thermal Management Devices by 3D Printing and Assembly of Continuous Carbon Nanotube Sheets vol.10, pp.32, 2015, https://doi.org/10.1021/acsami.8b07556
  106. One millimeter per minute growth rates for single wall carbon nanotube forests enabled by porous metal substrates vol.8, pp.14, 2018, https://doi.org/10.1039/c7ra13093g
  107. High-yield production of 2D crystals by wet-jet milling vol.5, pp.5, 2015, https://doi.org/10.1039/c8mh00487k
  108. A review of the interfacial characteristics of polymer nanocomposites containing carbon nanotubes vol.8, pp.49, 2015, https://doi.org/10.1039/c8ra04205e
  109. Green and facile approach to prepare polypropylene/in situ reduced graphene oxide nanocomposites with excellent electromagnetic interference shielding properties vol.8, pp.53, 2015, https://doi.org/10.1039/c8ra05007d
  110. Electrical and thermal properties of surface passivated carbon nanotube/polyvinylidene fluoride composites vol.1, pp.3, 2015, https://doi.org/10.1049/iet-nde.2018.0010
  111. Multiscale simulation of fullerene reinforced composite structures: From molecular dynamics to finite element continuum mechanics vol.188, pp.None, 2015, https://doi.org/10.1051/matecconf/201818801013
  112. Molecular dynamics simulations of the aggregation behaviour of overlapped graphene sheets in linear aliphatic hydrocarbons vol.44, pp.12, 2015, https://doi.org/10.1080/08927022.2018.1465569
  113. Recent Progress on the Dispersion and the Strengthening Effect of Carbon Nanotubes and Graphene-Reinforced Metal Nanocomposites: A Review vol.43, pp.1, 2015, https://doi.org/10.1080/10408436.2016.1243089
  114. Graphene-based nanocomposites: synthesis and their theranostic applications vol.26, pp.10, 2018, https://doi.org/10.1080/1061186x.2018.1437920
  115. Investigation on the flexural response of multiscale anisogrid composite panels reinforced with carbon fibers and multi-walled carbon nanotubes vol.52, pp.2, 2015, https://doi.org/10.1177/0021998317704981
  116. High Yield Single-Walled Carbon Nanotube Synthesis Through Multilayer Porous Mesh Substrates vol.16, pp.n, 2015, https://doi.org/10.1380/ejssnt.2018.279
  117. Electric and Optical Properties of CNTs/Ultraviolet Curing Resin Composite Film with Traveling Electric Field Application vol.67, pp.10, 2015, https://doi.org/10.2472/jsms.67.929
  118. Nanocomposite Platform Based on EDTA Modified Ppy/SWNTs for the Sensing of Pb(II) Ions by Electrochemical Method vol.6, pp.None, 2015, https://doi.org/10.3389/fchem.2018.00451
  119. Preparation and Characterization of Chitosan/β-Glycerophosphate Thermal-Sensitive Hydrogel Reinforced by Graphene Oxide vol.6, pp.None, 2015, https://doi.org/10.3389/fchem.2018.00565
  120. Tensile modulus of polymer/CNT nanocomposites containing networked and dispersed nanoparticles vol.64, pp.1, 2015, https://doi.org/10.1002/aic.15891
  121. Electrical Control of Shape in Voxelated Liquid Crystalline Polymer Nanocomposites vol.10, pp.1, 2015, https://doi.org/10.1021/acsami.7b13814
  122. Electrical, Mechanical and Electromechanical Properties of Graphene-Thermoset Polymer Composites Produced Using Acetone-DMF Solvents vol.10, pp.1, 2015, https://doi.org/10.3390/polym10010082
  123. Improved dispersion of carbon nanotubes in poly(vinylidene fluoride) composites by hybrids with core–shell structure vol.135, pp.3, 2015, https://doi.org/10.1002/app.45693
  124. Poly(triarylamine) composites with carbon nanomaterials for highly transparent and conductive coatings vol.646, pp.None, 2018, https://doi.org/10.1016/j.tsf.2017.11.025
  125. Biological Degradation and Biostability of Nanocomposites Based on Polysulfone with Different Concentrations of Reduced Graphene Oxide vol.303, pp.2, 2015, https://doi.org/10.1002/mame.201700359
  126. Graphene‐polymer nanocomposites for biomedical applications vol.29, pp.2, 2015, https://doi.org/10.1002/pat.4164
  127. Electrical, Thermal and Mechanical Properties of Epoxy/CNT/Calcium Carbonate Nanocomposites vol.21, pp.1, 2015, https://doi.org/10.1590/1980-5373-mr-2017-0801
  128. Effect of graphene and CNT reinforcement on mechanical and thermomechanical behavior of epoxy—A comparative study vol.135, pp.14, 2015, https://doi.org/10.1002/app.46101
  129. Functionalized cellulose nanocrystals as reinforcement in biodegradable polymer nanocomposites vol.39, pp.suppl1, 2015, https://doi.org/10.1002/pc.24583
  130. Influence of Mechanical Stretching on Adsorption Properties of Nitrogen-Doped Graphene vol.60, pp.4, 2015, https://doi.org/10.1134/s106378341804008x
  131. Tailored distribution of nanoparticles in bi-phasic polymeric blends as emerging materials for suppressing electromagnetic radiation: challenges and prospects vol.6, pp.13, 2018, https://doi.org/10.1039/c8tc00002f
  132. Experimental and theoretical correlation of reinforcement trends in acrylonitrile butadiene styrene/single‐walled carbon nanotubes hybrid composites vol.39, pp.suppl2, 2015, https://doi.org/10.1002/pc.24321
  133. A Review of Carbon Nanomaterials’ Synthesis via the Chemical Vapor Deposition (CVD) Method vol.11, pp.5, 2015, https://doi.org/10.3390/ma11050822
  134. Rapid quantitative mapping of multi-walled carbon nanotube concentration in nanocomposites vol.160, pp.None, 2015, https://doi.org/10.1016/j.compscitech.2018.03.010
  135. Noncovalent Functionalized Graphene-Filled Polyimides with Improved Thermal, Mechanical, and Wear Resistance Properties vol.66, pp.2, 2015, https://doi.org/10.1007/s11249-018-1017-y
  136. Mechanism governing nanoparticle flow behaviour in porous media: insight for enhanced oil recovery applications vol.8, pp.2, 2018, https://doi.org/10.1007/s40089-018-0237-3
  137. Coupling effect of PVDF molar mass and carboxyl content in CNTs on microstructure and thermal properties of CNT/PVDF composites vol.5, pp.6, 2015, https://doi.org/10.1088/2053-1591/aac920
  138. Non-covalently Functionalized Graphene Oxide-Based Coating to Enhance Thermal Stability and Flame Retardancy of PVA Film vol.10, pp.3, 2015, https://doi.org/10.1007/s40820-018-0190-8
  139. Preparation and characterisation of hydroxyl-terminated polybutadiene-based polyurethane/graphene nanocomposites vol.47, pp.6, 2015, https://doi.org/10.1080/14658011.2018.1460915
  140. In situ catalyzed and reinforced high‐temperature flexible crosslinked ZnO nano‐whisker/polyarylene ether nitriles composite dielectric films vol.39, pp.8, 2018, https://doi.org/10.1002/pc.24272
  141. Polypyrrole on graphene: A density functional theory study vol.674, pp.None, 2018, https://doi.org/10.1016/j.susc.2018.03.013
  142. Charged Carbon Nanomaterials: Redox Chemistries of Fullerenes, Carbon Nanotubes, and Graphenes vol.118, pp.16, 2015, https://doi.org/10.1021/acs.chemrev.8b00128
  143. In situ shear-induced mercapto group-activated graphite nanoplatelets for fabricating mechanically strong and thermally conductive elastomer composites for thermal management applications vol.112, pp.None, 2015, https://doi.org/10.1016/j.compositesa.2018.06.004
  144. Hydrolytic Stability of Films of Aromatic Polyimides and Composites on Their Basis, Filled with Carbon Nanocones vol.91, pp.9, 2015, https://doi.org/10.1134/s1070427218090082
  145. Grafting Carbon Nanotube for Dye-Sensitized Solar Cell Improvement vol.779, pp.None, 2015, https://doi.org/10.4028/www.scientific.net/kem.779.122
  146. Graphene Nanoplatelets-Based Advanced Materials and Recent Progress in Sustainable Applications vol.8, pp.9, 2015, https://doi.org/10.3390/app8091438
  147. A Review of the Synthesis and Applications of Polymer-Nanoclay Composites vol.8, pp.9, 2015, https://doi.org/10.3390/app8091696
  148. Interface Characterization of Epoxy Resin Nanocomposites: A Molecular Dynamics Approach vol.6, pp.3, 2015, https://doi.org/10.3390/fib6030054
  149. Effects of the Nanofillers on Physical Properties of Acrylonitrile-Butadiene-Styrene Nanocomposites: Comparison of Graphene Nanoplatelets and Multiwall Carbon Nanotubes vol.8, pp.9, 2015, https://doi.org/10.3390/nano8090674
  150. Fabrication of CNT/MgCl2-Supported Ti-based Ziegler-Natta Catalysts for Trans-selective Polymerization of Isoprene vol.53, pp.3, 2015, https://doi.org/10.7473/ec.2018.53.3.158
  151. Accelerating the Photocatalytic Degradation of Green Dye Pollutants by Using a New Coating Technique for Carbon Nanotubes with Nanolayered Structures and Nanocomposites vol.7, pp.10, 2015, https://doi.org/10.1002/open.201800173
  152. Functionalized carbon nanotubes for adsorptive removal of water pollutants vol.236, pp.None, 2018, https://doi.org/10.1016/j.mseb.2018.12.004
  153. Electrical conductivity, aging behavior, and electromagnetic interference (EMI) shielding properties of polyaniline/MWCNT nanocomposites vol.31, pp.10, 2018, https://doi.org/10.1177/0892705717738294
  154. Blending Electronics with the Human Body: A Pathway toward a Cybernetic Future vol.5, pp.10, 2018, https://doi.org/10.1002/advs.201700931
  155. Perspective: High pressure transformations in nanomaterials and opportunities in material design vol.124, pp.16, 2018, https://doi.org/10.1063/1.5045563
  156. Integration of graphene in poly(lactic) acid by 3D printing to develop creep and wear‐resistant hierarchical nanocomposites vol.39, pp.11, 2018, https://doi.org/10.1002/pc.24422
  157. Novel electro-conductive nanocomposites based on electrospun PLGA/CNT for biomedical applications vol.29, pp.11, 2018, https://doi.org/10.1007/s10856-018-6176-8
  158. Theoretical Prediction of Heat Transport in Few-Layer Graphene/Epoxy Composites vol.26, pp.11, 2015, https://doi.org/10.1007/s13233-018-6136-7
  159. Nanocarbon Reinforced Rubber Nanocomposites: Detailed Insights about Mechanical, Dynamical Mechanical Properties, Payne, and Mullin Effects vol.8, pp.11, 2015, https://doi.org/10.3390/nano8110945
  160. Effect of Carbon Nanotube Aspect Ratio on the Thermal and Electrical Properties of Epoxy Nanocomposites vol.26, pp.11, 2015, https://doi.org/10.1080/1536383x.2018.1476345
  161. Functionalization of multiwalled carbon nanotubes by amidation and Michael addition reactions and the effect of the functional chains on the properties of waterborne polyurethane composites vol.135, pp.42, 2015, https://doi.org/10.1002/app.46757
  162. Application of acoustic microscopy technique for the bulk visualization and elasticity measurement of nanocomposites vol.443, pp.None, 2015, https://doi.org/10.1088/1757-899x/443/1/012005
  163. Functionalized multiwalled carbon nanotubes with monocomponent intumescent flame retardant for reducing the flammability and smoke emission characteristics of epoxy resins vol.29, pp.12, 2018, https://doi.org/10.1002/pat.4420
  164. Simple and cost-effective method of highly conductive and elastic carbon nanotube/polydimethylsiloxane composite for wearable electronics vol.8, pp.None, 2015, https://doi.org/10.1038/s41598-017-18209-w
  165. Green preparation and characterization of graphene oxide/carbon nanotubes-loaded carboxymethyl cellulose nanocomposites vol.8, pp.None, 2018, https://doi.org/10.1038/s41598-018-35984-2
  166. Diffusion of Nanoparticles in Polymer Systems vol.60, pp.suppl1, 2015, https://doi.org/10.1134/s1811238218020212
  167. Compositing Two-Dimensional Materials with TiO2 for Photocatalysis vol.8, pp.12, 2015, https://doi.org/10.3390/catal8120590
  168. Thermoelastic vibration of doubly-curved nano-composite shells reinforced by graphene nanoplatelets vol.42, pp.1, 2015, https://doi.org/10.1080/01495739.2018.1524733
  169. Testing industrial laboratory dispersion method of Multi-Walled Carbon Nanotubes (MWCNTs) in aqueous medium vol.1247, pp.None, 2015, https://doi.org/10.1088/1742-6596/1247/1/012011
  170. Combining FEM and MD to simulate C60/PA-12 nanocomposites vol.10, pp.3, 2015, https://doi.org/10.1108/ijsi-10-2018-0071
  171. Potential biodegradable matrices and fiber treatment for green composites: A review vol.6, pp.1, 2019, https://doi.org/10.3934/matersci.2019.1.119
  172. Evaluation of Polymeric Coatings in CO2 Containing Environment vol.965, pp.None, 2015, https://doi.org/10.4028/www.scientific.net/msf.965.133
  173. High-Density Polyethylene Based on Exfoliated Graphite Nanoplatelets/Nano-Magnesium Oxide: An Investigation of Thermal Properties and Morphology vol.10, pp.3, 2019, https://doi.org/10.4236/msa.2019.103013
  174. Review of Theoretical and Applied Research of Graphene in Anti-corrosion Film and Organic Anti-corrosion Coatings vol.77, pp.11, 2019, https://doi.org/10.6023/a19050174
  175. Recent Progress in Polymeric Carbonyl‐Based Electrode Materials for Lithium and Sodium Ion Batteries vol.40, pp.1, 2015, https://doi.org/10.1002/marc.201800565
  176. Mechanical and tribological performance of polyamide 12 reinforced with graphene nanoplatelets and paraffin oil nanocomposites vol.50, pp.1, 2015, https://doi.org/10.1002/mawe.201700177
  177. A review of the electrical and mechanical properties of carbon nanofiller-reinforced polymer composites vol.54, pp.2, 2019, https://doi.org/10.1007/s10853-018-3006-9
  178. Recycling Graphene from Supercapacitor Electrodes as Reinforcing Filler for Epoxy Resins vol.10, pp.1, 2015, https://doi.org/10.1007/s12649-017-0039-2
  179. The preparation of carbon nanofillers and their role on the performance of variable polymer nanocomposites vol.22, pp.1, 2019, https://doi.org/10.1080/15685551.2019.1565664
  180. Recent Advances in Organic Thermoelectric Materials: Principle Mechanisms and Emerging Carbon-Based Green Energy Materials vol.11, pp.1, 2019, https://doi.org/10.3390/polym11010167
  181. Critical review of the factors dominating the fracture toughness of CNT reinforced polymer composites vol.6, pp.1, 2015, https://doi.org/10.1088/2053-1591/aae867
  182. Enhancing the adhesion of graphene to polymer substrates by controlled defect formation vol.30, pp.1, 2015, https://doi.org/10.1088/1361-6528/aae683
  183. Crystal Forms and Microphase Structures of Poly(vinylidene fluoride-co-hexafluoropropylene) Physically and Chemically Incorporated with Ionic Liquids vol.52, pp.1, 2019, https://doi.org/10.1021/acs.macromol.8b02087
  184. Evaluation of drilling performances of nanocomposites reinforced with graphene and graphene oxide vol.100, pp.9, 2019, https://doi.org/10.1007/s00170-018-2875-z
  185. Graphene-Based Nanocomposites for Neural Tissue Engineering vol.24, pp.4, 2015, https://doi.org/10.3390/molecules24040658
  186. Latent Heat Storage and Thermal Efficacy of Carboxymethyl Cellulose Carbon Foams Containing Ag, Al, Carbon Nanotubes, and Graphene in a Phase Change Material vol.9, pp.2, 2015, https://doi.org/10.3390/nano9020158
  187. Electrical Properties and Electromagnetic Interference Shielding Effectiveness of Interlayered Systems Composed by Carbon Nanotube Filled Carbon Nanofiber Mats and Polymer Composites vol.9, pp.2, 2015, https://doi.org/10.3390/nano9020238
  188. Improved tensile and fracture toughness properties of graphene nanoplatelets filled epoxy polymer via solvent compounding shear milling method vol.6, pp.2, 2015, https://doi.org/10.1088/2053-1591/aaeaf0
  189. Achieving long-term anticorrosionviathe inhibition of graphene's electrical activity vol.7, pp.6, 2015, https://doi.org/10.1039/c8ta10337b
  190. Carbon-based polymer nanocomposites as dielectric energy storage materials vol.30, pp.6, 2019, https://doi.org/10.1088/1361-6528/aaf12c
  191. Recent applications of carbonaceous nanosorbents for the analysis of mycotoxins in food by liquid chromatography: a short review vol.12, pp.1, 2015, https://doi.org/10.3920/wmj2018.2339
  192. Nanofibrillated cellulose composites and wood derived scaffolds for functional materials vol.7, pp.7, 2015, https://doi.org/10.1039/c8ta10711d
  193. Influence of Stainless-Steel Catalyst Substrate Type and Pretreatment on Growing Carbon Nanotubes from Waste Postconsumer Plastics vol.58, pp.8, 2019, https://doi.org/10.1021/acs.iecr.8b05770
  194. An overview on properties and applications of poly(butylene adipate‐co‐terephthalate)–PBAT based composites vol.59, pp.suppl2, 2015, https://doi.org/10.1002/pen.24770
  195. Graphite to Graphene: Green Synthesis Using Opuntia ficus-indica vol.48, pp.3, 2015, https://doi.org/10.1007/s11664-018-06918-5
  196. Enhancing the electrochemical performance of lithium ion battery anodes by poly(acrylonitrile-butyl acrylate)/graphene nanoplatelet composite binder vol.49, pp.4, 2015, https://doi.org/10.1007/s10800-019-01289-z
  197. Enhancing the flame retardancy of thermoplastic polyurethane by introducing montmorillonite nanosheets modified with phosphorylated chitosan vol.119, pp.None, 2019, https://doi.org/10.1016/j.compositesa.2019.02.009
  198. Improving the Damping Properties of Nanocomposites by Monodispersed Hybrid POSS Nanoparticles: Preparation and Mechanisms vol.11, pp.4, 2015, https://doi.org/10.3390/polym11040647
  199. Effect of Morphology of Calcium Carbonate on Toughness Behavior and Thermal Stability of Epoxy-Based Composites vol.7, pp.4, 2015, https://doi.org/10.3390/pr7040178
  200. Investigation of electrical, mechanical, and thermal properties of functionalized multiwalled carbon nanotubes‐reduced graphene Oxide/PMMA hybrid nanocomposites vol.59, pp.5, 2019, https://doi.org/10.1002/pen.25084
  201. Nanomechanical properties of single- and double-layer graphene spirals: a molecular dynamics simulation vol.125, pp.5, 2015, https://doi.org/10.1007/s00339-019-2623-8
  202. Magnetically sensitive nanocomposites based on the conductive shear-stiffening gel vol.54, pp.9, 2015, https://doi.org/10.1007/s10853-019-03360-8
  203. Rheological and electrical properties of polystyrene nanocomposites via incorporation of polymer-wrapped carbon nanotubes vol.31, pp.2, 2015, https://doi.org/10.1007/s13367-019-0012-7
  204. Thermo-electrical behaviour of cyclic olefin copolymer/exfoliated graphite nanoplatelets nanocomposites foamed through supercritical carbon dioxide vol.55, pp.3, 2015, https://doi.org/10.1177/0021955x19839733
  205. Carbon Nanotubes and Reduced Graphene Oxide’s Dimensionality Effect on Thermoset Matrix Performance vol.8, pp.3, 2015, https://doi.org/10.1520/mpc20180141
  206. Engineering nanomaterials for water and wastewater treatment: review of classifications, properties and applications vol.43, pp.21, 2015, https://doi.org/10.1039/c9nj00157c
  207. Photoluminescent Oxygeneous-Graphitic Carbon Nitride Nanodot-Incorporated Bioderived Hyperbranched Polyurethane Nanocomposite with Anticounterfeiting Attribute vol.4, pp.5, 2015, https://doi.org/10.1021/acsomega.9b00891
  208. Quasi-in-situ sizing of nanoparticles by laser-induced incandescence during the floating chemical vapor deposition synthesis of carbon nanotubes vol.125, pp.6, 2015, https://doi.org/10.1007/s00340-019-7201-4
  209. Synergistic effect of CNT/CB hybrid mixture on the electrical properties of conductive composites vol.6, pp.6, 2015, https://doi.org/10.1088/2053-1591/ab0a95
  210. Mechanical, wear and fatigue behavior of functionalized CNTs reinforced POM/PTFE composites vol.6, pp.6, 2015, https://doi.org/10.1088/2053-1591/ab0f4a
  211. Carbon-Filled Organic Phase-Change Materials for Thermal Energy Storage: A Review vol.24, pp.11, 2015, https://doi.org/10.3390/molecules24112055
  212. Property improvement of multi-walled carbon nanotubes/polypropylene composites with high filler loading via interfacial modification vol.9, pp.50, 2015, https://doi.org/10.1039/c9ra05493f
  213. Fabrication and characterization of microwave cured high-density polyethylene/carbon nanotube and polypropylene/carbon nanotube composites vol.53, pp.15, 2015, https://doi.org/10.1177/0021998318822705
  214. Formation Features of Hybrid Nanocomposites Based on Polydiphenylamine-2-Carboxylic Acid and Single-Walled Carbon Nanotubes vol.11, pp.7, 2015, https://doi.org/10.3390/polym11071181
  215. Timesaving, High-Efficiency Approaches To Fabricate Aramid Nanofibers vol.13, pp.7, 2019, https://doi.org/10.1021/acsnano.9b02258
  216. Graphene and CNT filled hybrid thermoplastic composites for enhanced EMI shielding effectiveness vol.6, pp.8, 2015, https://doi.org/10.1088/2053-1591/ab1e23
  217. Mechanical, Electrical and Rheological Behavior of Ethylene-Vinyl Acetate/Multi-Walled Carbon Nanotube Composites vol.11, pp.8, 2019, https://doi.org/10.3390/polym11081300
  218. Versatile Biomaterial Platform Enriched with Graphene Oxide and Carbon Nanotubes for Multiple Tissue Engineering Applications vol.20, pp.16, 2015, https://doi.org/10.3390/ijms20163868
  219. Study of Tribological Properties of Nano-Sized Red Mud Particle-Reinforced Polyester Composites vol.72, pp.9, 2015, https://doi.org/10.1007/s12666-019-01694-0
  220. Effects of arrangement and shape of MWCNT and GNP reinforcements on nanocomposite mechanical properties vol.38, pp.18, 2019, https://doi.org/10.1177/0731684419850892
  221. A review of mechanical analyses of rectangular nanobeams and single-, double-, and multi-walled carbon nanotubes using Eringen’s nonlocal elasticity theory vol.89, pp.9, 2015, https://doi.org/10.1007/s00419-019-01542-z
  222. Influence of amine-functionalised graphene oxide filler on mechanical and insulating property of epoxy nanocomposites vol.6, pp.9, 2015, https://doi.org/10.1088/2053-1591/ab2bd7
  223. Effect of rGO:MWCNTs ratio on electrical conductivity of polyazomethine/rGO:MWCNTs nanocomposites vol.6, pp.11, 2015, https://doi.org/10.1088/2053-1591/ab46f8
  224. Measuring surface energy of carbon nanotubes using modified washburn method vol.6, pp.11, 2015, https://doi.org/10.1088/2053-1591/ab4b2c
  225. The Role of Synergies of MWCNTs and Carbon Black in the Enhancement of the Electrical and Mechanical Response of Modified Epoxy Resins vol.9, pp.18, 2015, https://doi.org/10.3390/app9183757
  226. Polymer Composites Reinforced with Natural Fibers and Nanocellulose in the Automotive Industry: A Short Review vol.3, pp.2, 2015, https://doi.org/10.3390/jcs3020051
  227. Development of metal-graphene-filled hybrid composites: Characterization of mechanical, thermal, and electrical properties vol.53, pp.24, 2015, https://doi.org/10.1177/0021998318812928
  228. Tribological performance of multi walled carbon nanotubes-alumina hybrid/epoxy nanocomposites under dry sliding condition vol.6, pp.10, 2015, https://doi.org/10.1088/2053-1591/ab3ada
  229. Reinforcement of Bisphenol-A epoxy resin nanocomposites with noncovalent functionalized and physical adsorption modified CNTs vol.6, pp.10, 2015, https://doi.org/10.1088/2053-1591/ab3fe6
  230. Numerical investigation into dynamic behaviors of axially moving functionally graded porous sandwich nanoplates reinforced with graphene platelets vol.6, pp.10, 2019, https://doi.org/10.1088/2053-1591/ab407b
  231. Fast and Efficient Electric‐Triggered Self‐Healing Shape Memory of CNTs@rGO Enhanced PCLPLA Copolymer vol.220, pp.21, 2015, https://doi.org/10.1002/macp.201900281
  232. Large amplitude free flexural vibrations of functionally graded graphene platelets reinforced porous composite curved beams using finite element based on trigonometric shear deformation theory vol.116, pp.None, 2019, https://doi.org/10.1016/j.ijnonlinmec.2019.07.010
  233. Molecular dynamics simulations of single-walled carbon nanotubes and polymers vol.7, pp.5, 2015, https://doi.org/10.1680/jsuin.19.00020
  234. Correlation between morphology, rheological behavior, and electrical behavior of conductive cocontinuous LLDPE/EVA blends containing commercial graphene nanoplatelets vol.63, pp.6, 2019, https://doi.org/10.1122/1.5108919
  235. Enhanced creep behavior of carbon black/epoxy composites with high dispersion stability by fluorination vol.29, pp.6, 2015, https://doi.org/10.1007/s42823-019-00075-3
  236. 3D Porous Graphene Based Aerogel for Electromagnetic Applications vol.9, pp.1, 2015, https://doi.org/10.1038/s41598-019-52230-5
  237. The Role of Functionalization in the Applications of Carbon Materials: An Overview vol.5, pp.4, 2015, https://doi.org/10.3390/c5040084
  238. A review and future prospect of polymer blend mixed matrix membrane for CO2 separation vol.26, pp.12, 2015, https://doi.org/10.1007/s10965-019-1978-z
  239. Morphology and functional properties of electrospun expanded polystyrene (EPS)/reduced graphene oxide (RGO) nanofiber composite vol.27, pp.12, 2015, https://doi.org/10.1080/1536383x.2019.1666365
  240. Graphenic Materials for Biomedical Applications vol.9, pp.12, 2015, https://doi.org/10.3390/nano9121758
  241. Influence of hybrid system of nanofillers on the functional properties of postconsumer PET‐G–based nanocomposites vol.30, pp.12, 2015, https://doi.org/10.1002/pat.4729
  242. Finite element modelling of carbon fiber - carbon nanostructure - polymer hybrid composite structures vol.314, pp.None, 2015, https://doi.org/10.1051/matecconf/202031402004
  243. Rayleigh‐Instability‐Induced Transformation for Confined Polystyrene Nanotubes Prepared Using the Solvent‐Vapor‐Induced Wetting Method vol.305, pp.1, 2015, https://doi.org/10.1002/mame.201900465
  244. Functionalized graphenes as nanofillers for polylactide: Molecular dynamics simulation study vol.41, pp.1, 2015, https://doi.org/10.1002/pc.25369
  245. Enhanced Charge Transport and Corrosion Protection Properties of Polyaniline-Carbon Nanotube Composite Coatings on Mild Steel vol.49, pp.1, 2015, https://doi.org/10.1007/s11664-019-07783-6
  246. Evaluating the effect of addition of nanodiamond on the synergistic effect of graphene-carbon nanotube hybrid on the mechanical properties of epoxy based composites vol.81, pp.None, 2015, https://doi.org/10.1016/j.polymertesting.2019.106274
  247. Thermal postbuckling of shear deformable CNT-reinforced composite plates with tangentially restrained edges and temperature-dependent properties vol.33, pp.1, 2015, https://doi.org/10.1177/0892705718804588
  248. Influence of nanoclays on water uptake and flexural strength of glass-polyester composites vol.18, pp.None, 2015, https://doi.org/10.1177/2280800020930180
  249. Epoxy functionalization of multiwalled carbon nanotubes for their waterborne polyurethane composite with crosslinked structure vol.17, pp.1, 2015, https://doi.org/10.1007/s11998-019-00242-1
  250. Experimental design of Al2O3/MWCNT/HDPE hybrid nanocomposites for hip joint replacement vol.11, pp.1, 2015, https://doi.org/10.1080/21655979.2020.1775943
  251. Recent progress in graphene based polymer nanocomposites vol.6, pp.1, 2015, https://doi.org/10.1080/23312009.2020.1833476
  252. A review of high performance polymer nanocomposites for packaging applications in electronics and food industries vol.36, pp.1, 2015, https://doi.org/10.1177/8756087919849459
  253. Research on the interface properties and strengthening-toughening mechanism of nanocarbon-toughened ceramic matrix composites vol.9, pp.1, 2015, https://doi.org/10.1515/ntrev-2020-0017
  254. Graphene/Carbon Nanotube Hybrid Nanocomposites: Effect of Compression Molding and Fused Filament Fabrication on Properties vol.12, pp.1, 2020, https://doi.org/10.3390/polym12010101
  255. Understanding the adhesion properties of carbon nanotube, asphalt binder, and mineral aggregates at the nanoscale: a molecular dynamics study vol.38, pp.1, 2015, https://doi.org/10.1080/10916466.2019.1655446
  256. Rediscovery of nylon upgraded by interactive biorenewable nano-fillers vol.12, pp.4, 2020, https://doi.org/10.1039/c9nr08091k
  257. Polyacrylate grafted graphene oxide nanocomposites for biomedical applications vol.127, pp.5, 2015, https://doi.org/10.1063/1.5135572
  258. Fused Filament Fabrication of Piezoresistive Carbon Nanotubes Nanocomposites for Strain Monitoring vol.7, pp.None, 2015, https://doi.org/10.3389/fmats.2020.00012
  259. Preparation and electromagnetic wave absorption properties of polymer nanocomposites based on new functionalized graphene oxide iron pentacarbonyl and ionic liquid vol.46, pp.2, 2015, https://doi.org/10.1007/s11164-019-04037-2
  260. Core-mantle-shell novel nanostructures for efficacy escalating in poly(3-hexylthiophene):phenyl-C71-butyric acid methyl ester photovoltaics vol.30, pp.1, 2015, https://doi.org/10.1007/s42823-019-00069-1
  261. Effect of functionalized multi-walled carbon nanotubes on thermal and mechanical properties of acrylonitrile butadiene styrene nanocomposite vol.27, pp.2, 2015, https://doi.org/10.1007/s10965-020-2014-z
  262. Effect of laminate configuration on the free vibration/buckling of FG Graphene/PMMA composites vol.8, pp.2, 2015, https://doi.org/10.12989/anr.2020.8.2.103
  263. Enhanced Nucleation and Crystallization in PLA/CNT Composites via Disperse Orange 3 with Corresponding Improvement in Nanomechanical Properties vol.31, pp.3, 2020, https://doi.org/10.1002/pat.4777
  264. Study of the synergistic effect of boron nitride and carbon nanotubes in the improvement of thermal conductivity of epoxy composites vol.69, pp.3, 2020, https://doi.org/10.1002/pi.5949
  265. Electrochemical evaluation of polyaniline/multi-walled carbon nanotube composite synthesized by microwave plasma polymerization as a supercapacitor electrode vol.757, pp.None, 2015, https://doi.org/10.1088/1757-899x/757/1/012036
  266. Graphene reinforced carbon fibers vol.6, pp.17, 2015, https://doi.org/10.1126/sciadv.aaz4191
  267. Study on Atomic Oxygen Exposure and Hard Particle Impact of Polyimide Nanocomposites vol.19, pp.2, 2020, https://doi.org/10.1142/s0219581x19500078
  268. Powder hybrid nanomaterial: Detonation nanodiamonds – Carbon nanotubes and its stable reversible water nanofluids vol.565, pp.None, 2015, https://doi.org/10.1016/j.jcis.2020.01.034
  269. Evaluation of Different Compatibilization Strategies to Improve the Performance of Injection-Molded Green Composite Pieces Made of Polylactide Reinforced with Short Flaxseed Fibers vol.12, pp.4, 2015, https://doi.org/10.3390/polym12040821
  270. Carbon nanotube- and graphene-reinforced multiphase polymeric composites: review on their properties and applications vol.55, pp.7, 2020, https://doi.org/10.1007/s10853-019-04196-y
  271. Interlaminar to intralaminar mode I and II crack bifurcation due to aligned carbon nanotube reinforcement of aerospace-grade advanced composites vol.190, pp.None, 2015, https://doi.org/10.1016/j.compscitech.2020.108014
  272. Structural properties of nanocomposites based on resole‐type phenol‐formaldehyde oligomers and detonation nanodiamonds vol.137, pp.16, 2020, https://doi.org/10.1002/app.48582
  273. Conductive Scaffolds for Cardiac and Neuronal Tissue Engineering: Governing Factors and Mechanisms vol.30, pp.18, 2020, https://doi.org/10.1002/adfm.201901369
  274. Influence of Carbon Additives on Mechanical Characteristics of an Epoxy Binder vol.55, pp.3, 2015, https://doi.org/10.3103/s0025654420030176
  275. Immobilization of Cellulase from Trichoderma Reesei on Multiwall Carbon Nanotubes (MWCNTs) vol.864, pp.None, 2015, https://doi.org/10.1088/1757-899x/864/1/012171
  276. Polymers and Plastics Modified Electrodes for Biosensors: A Review vol.25, pp.10, 2015, https://doi.org/10.3390/molecules25102446
  277. Bio‐Inspired Nanospiky Metal Particles Enable Thin, Flexible, and Thermo‐Responsive Polymer Nanocomposites for Thermal Regulation vol.30, pp.23, 2015, https://doi.org/10.1002/adfm.201910328
  278. Thermal behavior of functionalized conventional polyaniline with hydrothermally synthesized graphene/carbon nanotubes vol.28, pp.6, 2020, https://doi.org/10.1080/1536383x.2019.1700501
  279. The Influence of Graphene Oxide on Nanoparticle Emissions during Drilling of Graphene/Epoxy Carbon-Fiber Reinforced Engineered Nanomaterials vol.11, pp.6, 2015, https://doi.org/10.3390/atmos11060573
  280. Poly(ethylene oxide)/Poly(3,4-ethylenedioxythiophene):Poly(styrene sulfonate) (PEDOT:PSS) Blends: An Efficient Route to Highly Conductive Thermoplastic Materials for Melt-State Extrusion Processing ? vol.2, pp.6, 2015, https://doi.org/10.1021/acsapm.0c00303
  281. Solvation Free Energy of Self-Assembled Complexes: Using Molecular Dynamics to Understand the Separation of ssDNA-Wrapped Single-Walled Carbon Nanotubes vol.124, pp.24, 2015, https://doi.org/10.1021/acs.jpcc.0c00983
  282. Synergy effect in hybrid nanocomposites based on carbon nanotubes and graphene nanoplatelets vol.31, pp.25, 2015, https://doi.org/10.1088/1361-6528/ab7fcc
  283. A Hierarchical 3D Graphene Nanocomposite Foam for Extremely Tough, Non‐Wettable, and Elastic Conductor vol.7, pp.14, 2015, https://doi.org/10.1002/admi.202000354
  284. Heavy crude oil asphaltenes as a nanofiller for epoxy resin vol.60, pp.7, 2015, https://doi.org/10.1002/pen.25399
  285. Low-Voltage Icing Protection Film for Automotive and Aeronautical Industries vol.10, pp.7, 2015, https://doi.org/10.3390/nano10071343
  286. Supermolecular Structure of Poly(Butylene Terephthalate) Fibers Formed with the Addition of Reduced Graphene Oxide vol.12, pp.7, 2015, https://doi.org/10.3390/polym12071456
  287. Calculation of the work of adhesion of polyisoprene on graphite by molecular dynamics simulations vol.18, pp.2, 2015, https://doi.org/10.1080/1539445x.2019.1701497
  288. Mechanical, thermal, and conductivity performances of novel thermoplastic natural rubber/graphene nanoplates/polyaniline composites vol.137, pp.28, 2015, https://doi.org/10.1002/app.48873
  289. Utilization of Graphite Rods from Waste Batteries to Produce Graphene Solvent for Augmented Mechanical Strength of Papers and Boards vol.1005, pp.None, 2015, https://doi.org/10.4028/www.scientific.net/msf.1005.131
  290. Multifunctional inkjet printed sensors for MMOD impact detection vol.29, pp.8, 2020, https://doi.org/10.1088/1361-665x/ab98eb
  291. Effect of Injection Molding Conditions on Crystalline Structure and Electrical Resistivity of PP/MWCNT Nanocomposites vol.12, pp.8, 2015, https://doi.org/10.3390/polym12081685
  292. Comparative Study of Poly(butylene terephthalate)/Carbon Nanotube Nanocomposites with Non-reactive and Reactive Elastomers: Morphology and Properties vol.59, pp.32, 2020, https://doi.org/10.1021/acs.iecr.0c01870
  293. The Effect of Single-Walled Carbon Nanotube (SWCNT) Concentration on the Mechanical and Rheological Behavior of Epoxy Matrix vol.56, pp.4, 2015, https://doi.org/10.1007/s11029-020-09900-7
  294. Comparing Multi-Walled Carbon Nanotubes and Halloysite Nanotubes as Reinforcements in EVA Nanocomposites vol.13, pp.17, 2015, https://doi.org/10.3390/ma13173809
  295. Nanomaterials in Dentistry: State of the Art and Future Challenges vol.10, pp.9, 2020, https://doi.org/10.3390/nano10091770
  296. Investigation of Commercial Graphenes vol.9, pp.10, 2020, https://doi.org/10.1002/open.202000234
  297. The acquirement of desirable dielectric properties of carbon nanofiber composites based on the controlled crystallization vol.31, pp.10, 2015, https://doi.org/10.1002/pat.4951
  298. Functionalized‐graphene reinforced polyethersulfone nanocomposites with improved physical and mechanical properties vol.41, pp.10, 2015, https://doi.org/10.1002/pc.25697
  299. Thermal Behavior and Flammability of Epoxy Composites Based on Multi-Walled Carbon Nanotubes and Expanded Graphite: A Comparative Study vol.10, pp.19, 2015, https://doi.org/10.3390/app10196928
  300. The effect of temperature on fatigue strength of poly(ether‐imide)/multiwalled carbon nanotube/carbon fibers composites for aeronautical application vol.137, pp.39, 2020, https://doi.org/10.1002/app.49160
  301. Crystallization kinetics, structure, and rheological behavior of poly(ethylene terephthalate)/multilayer graphene oxide nanocomposites vol.60, pp.11, 2020, https://doi.org/10.1002/pen.25516
  302. Improving Dispersion and Mechanical Properties of Polypropylene/Graphene Nanoplatelet Composites by Mixed Solvent-Assisted Melt Blending vol.28, pp.12, 2015, https://doi.org/10.1007/s13233-020-8144-7
  303. Rationally designed zinc borate@ZIF-8 core-shell nanorods for curing epoxy resins along with low flammability and high mechanical property vol.200, pp.None, 2015, https://doi.org/10.1016/j.compositesb.2020.108349
  304. Thermo-oxidative decomposition of multi-walled carbon nanotubes: Kinetics and thermodynamics vol.28, pp.11, 2015, https://doi.org/10.1080/1536383x.2020.1775591
  305. Thermal Mechanical Properties of Graphene Nano-Composites with Kevlar-Nomex Copolymer: A Comparison of the Physical and Chemical Interactions vol.12, pp.11, 2015, https://doi.org/10.3390/polym12112740
  306. Barrier properties of thermal and electrical conductive hydrophobic multigraphitic/epoxy coatings vol.137, pp.42, 2015, https://doi.org/10.1002/app.49281
  307. Development of functionalised foam for electrostatic discharge applications vol.49, pp.10, 2020, https://doi.org/10.1080/14658011.2020.1809232
  308. Potential of Graphene–Polymer Composites for Ligament and Tendon Repair: A Review vol.22, pp.12, 2015, https://doi.org/10.1002/adem.202000492
  309. Dual purpose, bio-based polylactic acid (PLA)-polycaprolactone (PCL) blends for coated abrasive and packaging industrial coating applications vol.27, pp.12, 2015, https://doi.org/10.1007/s10965-020-02320-0
  310. The Effect of Graft Density on the Ordering of Block Copolymer Grafted Nanoparticles vol.53, pp.23, 2015, https://doi.org/10.1021/acs.macromol.0c00981
  311. Recent Progress in Graphdiyne for Electrocatalytic Reactions vol.7, pp.24, 2015, https://doi.org/10.1002/celc.202001313
  312. Cellulose Nanocrystal 도입에 따른 Polylactic Acid 용액의 유변학적 거동 관찰 및 필름의 물성 향상 연구 vol.57, pp.6, 2020, https://doi.org/10.12772/tse.2020.57.347
  313. The effect of incorporation of hybrid silica and cobalt ferrite nanofillers on the mechanical characteristics of glass fiber‐reinforced polymeric composites vol.42, pp.1, 2015, https://doi.org/10.1002/pc.25823
  314. Temperature-Dependent Synergistic Effect of Multi-Walled Carbon Nanotubes and Graphene Nanoplatelets on the Tensile Quasi-Static and Fatigue Properties of Epoxy Nanocomposites vol.13, pp.1, 2021, https://doi.org/10.3390/polym13010084
  315. Synthesis of multiwalled carbon nanotubes from polyethylene waste to enhance the rheological behavior of lubricating grease vol.29, pp.1, 2015, https://doi.org/10.1080/1536383x.2020.1806828
  316. Synergistic toughening and electrical functionalization of an epoxy using MWCNTs and silane‐ /plasma‐activated basalt fibers vol.138, pp.1, 2015, https://doi.org/10.1002/app.49605
  317. Thermal, Rheological, Mechanical, and Electrical Properties of Polypropylene/Multi-Walled Carbon Nanotube Nanocomposites vol.13, pp.2, 2015, https://doi.org/10.3390/polym13020187
  318. Nonlinear axisymmetric dynamic buckling of functionally graded graphene reinforced porous nanocomposite spherical caps vol.28, pp.2, 2015, https://doi.org/10.1080/15376494.2018.1549296
  319. A study on the effect of carbon nanotube surface modification on mechanical and thermal properties of CNT/HDPE nanocomposite vol.34, pp.2, 2015, https://doi.org/10.1177/0892705719838005
  320. A Novel Composite with Structural Health Monitoring Functionality via 2D and 3D Impedance Mapping Topography vol.11, pp.4, 2015, https://doi.org/10.3390/app11041647
  321. Dielectric Spectroscopy of PP/MWCNT Nanocomposites: Relationship with Crystalline Structure and Injection Molding Condition vol.11, pp.2, 2015, https://doi.org/10.3390/nano11020550
  322. A Review of the Polymer for Cryogenic Application: Methods, Mechanisms and Perspectives vol.13, pp.3, 2015, https://doi.org/10.3390/polym13030320
  323. Understanding interfacial dispersions in ecobenign polymer nano-biocomposites vol.60, pp.3, 2015, https://doi.org/10.1080/25740881.2020.1811312
  324. Supramolecular Polymer Nanocomposites for Biomedical Applications vol.13, pp.4, 2015, https://doi.org/10.3390/polym13040513
  325. Self-Healing Polymer Nanocomposite Materials by Joule Effect vol.13, pp.4, 2021, https://doi.org/10.3390/polym13040649
  326. Superior anticorrosion performance of epoxy‐based composites with well‐dispersed melamine modified graphene oxide vol.138, pp.8, 2015, https://doi.org/10.1002/app.49866
  327. Integrated transition metal and compounds with carbon nanomaterials for electrochemical water splitting vol.9, pp.7, 2015, https://doi.org/10.1039/d0ta09495a
  328. Novel conductive polymer composites based on CNTs/CNFs bridged liquid metal vol.54, pp.8, 2015, https://doi.org/10.1088/1361-6463/abc77b
  329. Effect of conductive polypyrrole in poly(acrylonitrile-co-butyl acrylate) water-based binder on the performance of electrochemical double-layer capacitors vol.25, pp.3, 2015, https://doi.org/10.1007/s10008-020-04864-z
  330. Improved mechanical and rheological behavior of nitrile rubber reinforced with multi-walled carbon nanotubes and carbon black dual-filler system vol.26, pp.None, 2015, https://doi.org/10.1016/j.mtcomm.2020.101884
  331. Improving the volumetric specific capacitance of flexible polyaniline electrode: solution casting method and effect of reduced graphene oxide sheets vol.64, pp.3, 2015, https://doi.org/10.1007/s40843-020-1472-3
  332. Electrospun Poly(butylene-adipate-co-terephthalate)/Nano-hyDroxyapatite/Graphene Nanoribbon Scaffolds Improved the In Vivo Osteogenesis of the Neoformed Bone vol.12, pp.1, 2015, https://doi.org/10.3390/jfb12010011
  333. Effect of graphene filler structure on electrical, thermal, mechanical, and fire retardant properties of epoxy-graphene nanocomposites - a review vol.46, pp.2, 2015, https://doi.org/10.1080/10408436.2019.1708702
  334. Resistance spot-welding of AISI-1008 steel joints with MWCNT coating interlayer vol.36, pp.4, 2015, https://doi.org/10.1080/10426914.2020.1843667
  335. Tribological and corrosion performance of epoxy resin composite coatings reinforced with graphene oxide and fly ash cenospheres vol.138, pp.11, 2015, https://doi.org/10.1002/app.50042
  336. Green synthesis of nano-Al2O3, recent functionalization, and fabrication of synthetic or natural polymer nanocomposites: various technological applications vol.45, pp.11, 2015, https://doi.org/10.1039/d0nj05578f
  337. Piezo-driven jet valve dispensing of carbon nanotube-loaded composites: optimisation and characterisation vol.7, pp.1, 2021, https://doi.org/10.1080/20550324.2021.2004702
  338. Fabrication, Functionalization, and Application of Carbon Nanotube-Reinforced Polymer Composite: An Overview vol.13, pp.7, 2015, https://doi.org/10.3390/polym13071047
  339. Poly(vinylidene fluoride) with zinc oxide and carbon nanotubes applied to pressure sheath layers in oil and gas pipelines vol.138, pp.14, 2015, https://doi.org/10.1002/app.50157
  340. Multiscale Toughening of Composites with Carbon Nanotubes-Continuous Multiscale Reinforcement New Concept vol.5, pp.5, 2015, https://doi.org/10.3390/jcs5050135
  341. Tunneling Atomic Force Microscopy Analysis of Supramolecular Self-Responsive Nanocomposites vol.13, pp.9, 2015, https://doi.org/10.3390/polym13091401
  342. Fabrication and Characterization of Physical and Mechanical Properties of Carbon Nanotubes-Graphene-Based Sandwich Composite Pressure Sensor vol.11, pp.5, 2015, https://doi.org/10.3390/nano11051284
  343. Investigation of the Effects of Multi-Wall and Single-Wall Carbon Nanotubes Concentration on the Properties of ABS Nanocomposites vol.7, pp.2, 2015, https://doi.org/10.3390/c7020033
  344. Mechanical and Electrical Properties of Epoxy Composites Modified by Functionalized Multiwalled Carbon Nanotubes vol.14, pp.12, 2015, https://doi.org/10.3390/ma14123325
  345. Review: Mixed-Matrix Membranes with CNT for CO2 Separation Processes vol.11, pp.6, 2015, https://doi.org/10.3390/membranes11060457
  346. Non-Covalent Interactions on Polymer-Graphene Nanocomposites and Their Effects on the Electrical Conductivity vol.13, pp.11, 2015, https://doi.org/10.3390/polym13111714
  347. The mechanical and flame retardant characteristics of lignin-based phenolic foams reinforced with MWCNTs by in-situ polymerization vol.42, pp.7, 2015, https://doi.org/10.1080/01932691.2020.1735410
  348. Computer Simulation of Elastomeric Blade and Annular Specimens Testing Taking into Account the Deformation Rate of Their Working Parts vol.1945, pp.1, 2015, https://doi.org/10.1088/1742-6596/1945/1/012006
  349. Effect of carbon nanotubes functionalization on properties of their nanocomposites with polycarbonate/poly(acrylonitrile‐butadiene‐styrene) matrix vol.138, pp.21, 2015, https://doi.org/10.1002/app.50471
  350. Contacts transition induced stiffening mechanism in CNT-network/epoxy composites vol.178, pp.None, 2015, https://doi.org/10.1016/j.carbon.2021.03.060
  351. Tribological Behavior of Carbon-Based Nanomaterial-Reinforced Nickel Metal Matrix Composites vol.14, pp.13, 2021, https://doi.org/10.3390/ma14133536
  352. Tribological behaviors of composites reinforced by different functionalized carbon nanotube using molecular dynamic simulation vol.476, pp.None, 2015, https://doi.org/10.1016/j.wear.2021.203669
  353. Mechanical response of carbon nanotube reinforced particulate composites with implications for polymer bonded explosives vol.55, pp.19, 2015, https://doi.org/10.1177/0021998321990863
  354. Advances in materials process and separation mechanism of the membrane towards hydrogen separation vol.46, pp.53, 2021, https://doi.org/10.1016/j.ijhydene.2021.05.175
  355. Quantifying Mechanical Abrasion of MWCNT Nanocomposites Used in 3D Printing: Influence of CNT Content on Abrasion Products and Rate of Microplastic Production vol.55, pp.15, 2015, https://doi.org/10.1021/acs.est.0c02015
  356. Three-Dimensional Non-Fourier Heat Transfer Analysis of Multilayer Functionally Graded Graphene Platelets Reinforced Composite Truncated Conical Shells vol.42, pp.15, 2015, https://doi.org/10.1080/01457632.2020.1785700
  357. Comparative study of different carbon reinforcements at different length scales on the properties of polyvinyl alcohol composites vol.42, pp.9, 2015, https://doi.org/10.1002/pc.26142
  358. In situ detection of oil leakage by new self-sensing nanocomposite sensor containing MWCNTs vol.11, pp.9, 2021, https://doi.org/10.1007/s13204-021-02082-1
  359. A NEW CRITERION FOR DRILLING MACHINABILITY EVALUATION OF NANOCOMPOSITES MODIFIED BY GRAPHENE/CARBON FIBER EPOXY MATRIX AND OPTIMIZATION USING COMBINED COMPROMISE SOLUTION vol.28, pp.9, 2015, https://doi.org/10.1142/s0218625x21500827
  360. Laser Technology for the Formation of Bioelectronic Nanocomposites Based on Single-Walled Carbon Nanotubes and Proteins with Different Structures, Electrical Conductivity and Biocompatibility vol.11, pp.17, 2021, https://doi.org/10.3390/app11178036
  361. Interface Strengthening of PS/aPA Polymer Blend Nanocomposites via In Situ Compatibilization: Enhancement of Electrical and Rheological Properties vol.14, pp.17, 2015, https://doi.org/10.3390/ma14174813
  362. A Review on the Production Methods and Applications of Graphene-Based Materials vol.11, pp.9, 2021, https://doi.org/10.3390/nano11092414
  363. Ice-Prevention and De-Icing Capacity of Epoxy Resin Filled with Hybrid Carbon-Nanostructured Forms: Self-Heating by Joule Effect vol.11, pp.9, 2015, https://doi.org/10.3390/nano11092427
  364. Graphene-Based Nanocomposites: Synthesis, Mechanical Properties, and Characterizations vol.13, pp.17, 2021, https://doi.org/10.3390/polym13172869
  365. Statistical and Machine Learning-Driven Optimization of Mechanical Properties in Designing Durable HDPE Nanobiocomposites vol.13, pp.18, 2015, https://doi.org/10.3390/polym13183100
  366. Carbon Nanotube Wearable Sensors for Health Diagnostics vol.21, pp.17, 2015, https://doi.org/10.3390/s21175847
  367. Exceeding high concentration limits of aqueous dispersion of carbon nanotubes assisted by nanoscale xylan hydrate crystals vol.419, pp.None, 2015, https://doi.org/10.1016/j.cej.2021.129602
  368. Improved Thermal Conductivity of Polymer Composites by Noncovalent Modification of Boron Nitride via Tannic Acid Chemistry vol.60, pp.34, 2015, https://doi.org/10.1021/acs.iecr.1c02217
  369. Cutting edge development on graphene derivatives modified by liquid crystal and CdS/TiO2 hybrid matrix: optoelectronics and biotechnological aspects vol.46, pp.5, 2015, https://doi.org/10.1080/10408436.2020.1805295
  370. Positive Temperature Coefficient and Electrical Conductivity Investigation of Hybrid Nanocomposites Based on High‐Density Polyethylene/Graphene Nanoplatelets/Carbon Black vol.218, pp.20, 2015, https://doi.org/10.1002/pssa.202100361
  371. Improvements in the thermomechanical and electrical behavior of hybrid carbon-epoxy nanocomposites vol.5, pp.None, 2021, https://doi.org/10.1016/j.cartre.2021.100126
  372. Evolving scientific aptitude of poly(ethylene glycol) filled with carbonaceous nanofillers vol.37, pp.4, 2021, https://doi.org/10.1177/8756087921999094
  373. Microstructural Design of Graphene Nanocomposites for Improved Electrical Conductivity vol.143, pp.4, 2015, https://doi.org/10.1115/1.4051307
  374. Recent Advances on Enhanced Thermal Conduction in Phase Change Materials using Carbon Nanomaterials vol.43, pp.None, 2021, https://doi.org/10.1016/j.est.2021.103173
  375. The effect of nanoparticle additive on surface milling in glass fiber reinforced composite structures vol.29, pp.9, 2015, https://doi.org/10.1177/09673911211014172
  376. Conjugated Polymer/Graphene Oxide Nanocomposites-State-of-the-Art vol.5, pp.11, 2015, https://doi.org/10.3390/jcs5110292
  377. Enhancement of Mode I fracture toughness properties of epoxy reinforced with graphene nanoplatelets and carbon nanotubes vol.224, pp.None, 2015, https://doi.org/10.1016/j.compositesb.2021.109177
  378. CO2 separation by mixed matrix membranes incorporated with carbon nanotubes: a review of morphological, mechanical, thermal and transport properties vol.38, pp.4, 2015, https://doi.org/10.1007/s43153-021-00165-8
  379. Mechanical behavior and microstructure of 3D-printed carbon nanotubes-reinforced Cu composite vol.120, pp.None, 2015, https://doi.org/10.1016/j.diamond.2021.108651
  380. Versatile carbon-loaded shellac ink for disposable printed electronics vol.11, pp.1, 2015, https://doi.org/10.1038/s41598-021-03075-4
  381. Analysis of vibration in rotating pretwisted functionally graded graphene platelets reinforced nanocomposite laminated blades with an attached point mass vol.235, pp.23, 2015, https://doi.org/10.1177/09544062211008471
  382. Preparation and Property of Bio-Polyimide/Halloysite Nanocomposite Based on 2,5-Furandicarboxylic Acid vol.13, pp.23, 2015, https://doi.org/10.3390/polym13234057
  383. The Influence of Sonication Processing Conditions on Electrical and Mechanical Properties of Single and Hybrid Epoxy Nanocomposites Filled with Carbon Nanoparticles vol.13, pp.23, 2021, https://doi.org/10.3390/polym13234128
  384. Effect of Graphene Nanoplatelets on Water Absorption Properties of Coconut Shell Reinforced Unsaturated Polyester Composites vol.2129, pp.1, 2021, https://doi.org/10.1088/1742-6596/2129/1/012072
  385. Tensile Performance of Polymer Nanocomposites with Randomly Dispersed Carbon Nanothreads vol.54, pp.24, 2015, https://doi.org/10.1021/acs.macromol.1c01711
  386. A size-dependent nonlinear finite element free vibration analysis of multilayer FG-GPLRC toroidal micropanels in thermal environment vol.279, pp.None, 2015, https://doi.org/10.1016/j.compstruct.2021.114783
  387. Effect of chirality and defects on tensile behavior of carbon nanotubes and graphene: Insights from molecular dynamics vol.121, pp.None, 2015, https://doi.org/10.1016/j.diamond.2021.108769
  388. Ant Lion Optimizer (ALO) algorithm for machinability assessment during Milling of polymer composites modified by zero-dimensional carbon nano onions (0D-CNOs) vol.187, pp.None, 2015, https://doi.org/10.1016/j.measurement.2021.110282
  389. Influence of Graphene Nano Fillers and Carbon Nano Tubes on the Mechanical and Thermal Properties of Hollow Glass Microsphere Epoxy Composites vol.10, pp.1, 2015, https://doi.org/10.3390/pr10010040
  390. Relationship between microstructure evolution and properties enhancement of carbon nanotubes‐filled polybutylene terephthalate/polypropylene blends induced by thermal annealing vol.139, pp.8, 2015, https://doi.org/10.1002/app.51689
  391. On the free vibration behavior of nanocomposite laminated plates contained piece-wise functionally graded graphene-reinforced composite plies vol.253, pp.None, 2015, https://doi.org/10.1016/j.engstruct.2021.113784
  392. Future advances and challenges of nanomaterial-based technologies for electromagnetic interference-based technologies: A review vol.205, pp.None, 2015, https://doi.org/10.1016/j.envres.2021.112402