DOI QR코드

DOI QR Code

Reviews on Preparation and Membrane Applications of Polybenzimidazole Polymers

폴리벤즈이미다졸계 분리막의 제조와 응용

  • Jeong, Moon Ki (Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Nam, Sang Yong (Department of Materials Engineering and Convergence Technology, Gyeongsang National University)
  • 정문기 (경상대학교 나노신소재융합공학과) ;
  • 남상용 (경상대학교 나노신소재융합공학과)
  • Received : 2016.08.28
  • Accepted : 2016.08.30
  • Published : 2016.08.31

Abstract

In this review, we discussed fabrication methods, applications and recent trends of polybenzimidazole membranes which have the highest thermal resistance among the commercial polymers in existence. First of all, basic and modified with specific purpose synthesis method of polybenzimidazole and its own unique features including a mechanical and chemical properties are summarized. Furthermore, various polybenzimidazole membranes are classified by types and methods and, using their excellent properties, various applications and possible field to take advantage of the potential are also summarized. Next, we discussed about not only advantages of polybenzimidazole membranes but also directions of state-of-the-art trends. Lastly, the limit of polybenzimidazole membranes and its complements are also analyzed.

본 리뷰에서는 현존하는 상업용 고분자 중 가장 높은 내열성능을 가진 폴리벤즈이미다졸계 분리막의 제조방법과 응용 및 동향에 대하여 논의하였다. 먼저 기본적인 폴리벤즈이미다졸의 합성방법과 특정 목적에 따른 개질된 방법을 예로 들고, 기계적 화학적 특성 및 해당 고분자만의 특징에 대한 내용들을 정리하였다. 또한 여러 가지 폴리벤즈이미다졸 분리막을 종류와 제조 방법에 따라 구분하였으며, 해당 고분자의 우수한 물성 및 특성을 이용하여 다양한 분야에 적용시킨 사례를 위주로 정리하였다. 다음으로 다양한 응용분야에 대한 폴리벤즈이미다졸계 분리막으로서의 장점과 최신 연구 동향에 대하여 분석하고 정리하였으며 마지막으로 해당 소재의 한계점을 비롯하여 개선점 및 향후 응용 방향에 대해서도 기술하였다.

Keywords

References

  1. J. Chen, P. Chen, Y. Liu, and K. Chen, "Polybenzimidazoles containing bulky substituents and ether linkages for high-temperature proton exchange membrane fuel cell applications", J. Membr. Sci., 513, 270 (2016). https://doi.org/10.1016/j.memsci.2016.04.041
  2. T. Chung, "A critical review of polybenzimidazoles: historical development and future R&D", Polym. Rev. (Phila Pa), 37, 277 (1997). https://doi.org/10.1080/15321799708018367
  3. E. W. Neuse, "Aromatic polybenzimidazoles. Syntheses, properties, and applications", pp. 1-42, Springer Berlin Heidelberg (1982).
  4. S. Sivaram, "The history of polymers: the origins and the growth of a science", pp. 1-55, National chemical laboratory, India (2012).
  5. E. Powers and G. Serad, "History and development of polybenzimidazoles", pp. 355-373, Springer Netherlands, New York, NY (1986).
  6. H. M. S. Iqbal, "Performance evaluation of polybenzimidazole for potential aerospace applications", pp. 3-10, TU Delft, Delft University of Technology, Netherland (2014).
  7. S. Zhu, L. Yan, D. Zhang, and Q. Feng, "Molecular dynamics simulation of microscopic structure and hydrogen bond network of the pristine and phosphoric acid doped polybenzimidazole", Polymer, 52, 881 (2011). https://doi.org/10.1016/j.polymer.2010.12.037
  8. D. Seel, B. Benicewicz, L. Xiao, and T. Schmidt, "High temperature polybenzimidazol based membranes", pp. 1-13, University of South Carolina, Columbia, SC, USA (2009).
  9. A. L. Gulledge, "Advancements in the eesign, synthesis, and application of polybenzimidazoles", (Doctoral dissertation), Retrieved from http://scholarcommons.sc.edu/etd/2600 (2014).
  10. W. Graessley, A. Bhuiyan, M. Droescher, and E. Neuse, "Synthesis and Degradation Rheology and Extrusion", Adv. Polym. Sci., 47, 145 (1982).
  11. Y. Iwakura, K. Uno, and Y. Imai, "Polyphenylenebenzimidazoles", J. Polym. Sci. A., 2, 2605 (1964).
  12. I. Varma, "Effect of structure on properties of aromatic- aliphatic polybenzimidazoles", J. Polym. Sci. A Polym. Chem., 14, 973 (1976). https://doi.org/10.1002/pol.1976.170140417
  13. H. Vogel and C. Marvel, "Polybenzimidazoles, new thermally stable polymers", J. Polym. Sci. A Polym. Chem., 50, 511 (1961).
  14. R. N. Demartino, "Comfort properties of polybenzimidazole fiber", Text. Res. J., 54, 516 (1984). https://doi.org/10.1177/004051758405400803
  15. R. F. Kovar and F. Arnold, "Para-ordered polybenzimidazole", J. Polym. Sci. A Polym. Chem., 14, 2807 (1976). https://doi.org/10.1002/pol.1976.170141120
  16. J. A. Asensio, S. Borros, and P. Gomez-Romero, "Proton-conducting membranes based on poly, (2, 5-benzimidazole)(ABPBI) and phosphoric acid prepared by direct acid casting", J. Membr. Sci., 241, 89 (2004). https://doi.org/10.1016/j.memsci.2004.03.044
  17. H. Kim, S. Y. Cho, S. J. An, Y. C. Eun, J. Kim, H. Yoon, H. Kweon, and K. H. Yew, "Synthesis of poly (2, 5-benzimidazole) for use as a fuelcell membrane", Macromol Rapid Commun., 25, 894 (2004). https://doi.org/10.1002/marc.200300288
  18. T. Kwon, J. Lee, H. Cho, D. Henkensmeier, Y. Kang, S. M. Hong, and C. M. Koo, "Ionic polymer actuator based on anion-conducting methylated ether-linked polybenzimidazole", Sens Actuators B Chem., 214, 43 (2015). https://doi.org/10.1016/j.snb.2015.03.007
  19. Y. Kang, J. Zou, Z. Sun, F. Wang, H. Zhu, K. Han, W. Yang, H. Song, and Q. Meng, "Polybenzimidazole containing ether units as electrolyte for high temperature proton exchange membrane fuel cells", Int. J. Hydrogen Energy., 38, 6494 (2013). https://doi.org/10.1016/j.ijhydene.2013.03.051
  20. K. Hwang, J. Kim, S. Kim, and H. Byun, "Preparation of polybenzimidazole-based membranes and their potential applications in the fuel cell system", Energies., 7, 1721 (2014). https://doi.org/10.3390/en7031721
  21. J. Peron, E. Ruiz, D. J. Jones, and J. Roziere, "Solution sulfonation of a novel polybenzimidazole: a proton electrolyte for fuel cell application", J. Membr. Sci., 314, 247 (2008). https://doi.org/10.1016/j.memsci.2008.01.044
  22. H. Bai and W. W. Ho, "New sulfonated polybenzimidazole (SPBI) copolymer-based proton-exchange membranes for fuel cells", J. Taiwan Inst. Chem. Eng., 40, 260 (2009). https://doi.org/10.1016/j.jtice.2008.12.014
  23. S. Chuang and S. L. Hsu, "Synthesis and properties of a new fluorine-containing polybenzimidazole for high-temperature fuel-cell applications", J. Polym. Sci. A Polym. Chem., 44, 4508 (2006). https://doi.org/10.1002/pola.21555
  24. L. Xiao, H. Zhang, T. Jana, E. Scanlon, R. Chen, E. Choe, L. Ramanathan, S. Yu, and B. Benicewicz, "Synthesis and characterization of pyridine based polybenzimidazoles for high temperature polymer electrolyte membrane fuel cell applications", Fuel Cells., 5, 287 (2005). https://doi.org/10.1002/fuce.200400067
  25. E. Quartarone, A. Magistris, P. Mustarelli, S. Grandi, A. Carollo, G. Zukowska, J. Garbarczyk, J. Nowinski, C. Gerbaldi, and S. Bodoardo, "Pyridine-based PBI Composite Membranes for PEMFCs", Fuel Cells., 9, 349 (2009). https://doi.org/10.1002/fuce.200800149
  26. S. Yu and B. C. Benicewicz, "Synthesis and properties of functionalized polybenzimidazoles for high-temperature PEMFCs", Macromolecules., 42, 8640 (2009). https://doi.org/10.1021/ma9015664
  27. X. Li, X. Chen, and B. C. Benicewicz, "Synthesis and properties of phenylindane-containing polybenzimidazole (PBI) for high-temperature polymer electrolyte membrane fuel cells (PEMFCs)", J. Power Sources., 243, 796 (2013). https://doi.org/10.1016/j.jpowsour.2013.06.033
  28. L. Wadhwa, M. Bitritto, and E. J. Powers, Fabrication of high performance polybenzimidazole films (1990).
  29. D. Hoel and E. Grunwald, "High protonic conduction of polybenzimidazole films", J. Phys. Chem., 81, 2135 (1977). https://doi.org/10.1021/j100537a021
  30. J. M. Lee, J. H. Park, D. J. Kim, M. G. Lee, and S. Y. Nam, "Characterization and preparation of polyimide copolymer membranes by non-solvent induced phase separation method", Membr. J., 25, 343 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.4.343
  31. J. Khandurina, S. C. Jacobson, L. C. Waters, R. S. Foote, and J. M. Ramsey, "Microfabricated porous membrane structure for sample concentration and electrophoretic analysis", Anal. Chem., 71, 1815 (1999). https://doi.org/10.1021/ac981161c
  32. Z. Ahmed, J. Cho, B. Lim, K. Song, and K. Ahn, "Effects of sludge retention time on membrane fouling and microbial community structure in a membrane bioreactor", J. Membr. Sci., 287, 211 (2007). https://doi.org/10.1016/j.memsci.2006.10.036
  33. D. Mecerreyes, H. Grande, O. Miguel, E. Ochoteco, R. Marcilla, and I. Cantero, "Porous polybenzimidazole membranes doped with phosphoric acid: highly proton-conducting solid electrolytes", Chemistry of materials., 16, 604 (2004). https://doi.org/10.1021/cm034398k
  34. W. M. Rhee, F. A. Delustro, and R. A. Berg, Crosslinked polymer compositions and methods for their use (2000).
  35. H. Luo, H. Pu, Z. Chang, D. Wan, and H. Pan, "Crosslinked polybenzimidazole via a Diels-Alder reaction for proton conducting membranes", J. Mater. Chem. A Mater. Energy Sustain., 22, 20696 (2012).
  36. Q. Li, C. Pan, J. O. Jensen, P. Noye, and N. J. Bjerrum, "Cross-linked polybenzimidazole membranes for fuel cells", Chemistry of materials., 19, 350 (2007). https://doi.org/10.1021/cm0627793
  37. I. B. Valtcheva, P. Marchetti, and A. G. Livingston, "Crosslinked polybenzimidazole membranes for organic solvent nanofiltration (OSN): Analysis of crosslinking reaction mechanism and effects of reaction parameters", J. Membr. Sci., 493, 568 (2015). https://doi.org/10.1016/j.memsci.2015.06.056
  38. P. Vandezande, L. E. Gevers, and I. F. Vankelecom, "Solvent resistant nanofiltration: separating on a molecular level", Chem. Soc. Rev., 37, 365 (2008). https://doi.org/10.1039/B610848M
  39. K. Y. Wang and T. Chung, "Polybenzimidazole nanofiltration hollow fiber for cephalexin separation", AIChE J., 52, 1363 (2006). https://doi.org/10.1002/aic.10741
  40. K. Y. Wang, T. Chung, and J. Qin, "Polybenzimidazole (PBI) nanofiltration hollow fiber membranes applied in forward osmosis process", J. Membr. Sci., 300, 6 (2007). https://doi.org/10.1016/j.memsci.2007.05.035
  41. G. Hoogers, "Fuel cell technology handbook", CRC press (2002).
  42. D. J. Kim and S. Y. Nam, "Research trend of organic/ inorganic composite membrane for polymer electrolyte membrane fuel cell", Membr. J., 22, 155 (2012).
  43. J. Lobato, P. Canizares, M. Rodrigo, J. Linares, and J. Aguilar, "Improved polybenzimidazole films for H 3 PO 4-doped PBI-based high temperature PEMFC", J. Membr. Sci., 306, 47 (2007). https://doi.org/10.1016/j.memsci.2007.08.028
  44. Y. Zhai, H. Zhang, G. Liu, J. Hu, and B. Yi, "Degradation study on MEA in H3PO4/PBI hightemperature PEMFC life test", J. Electrochem. Soc., 154, B72 (2007). https://doi.org/10.1149/1.2372687
  45. J. Wang, R. Savinell, J. Wainright, M. Litt, and H. Yu, "A $H_2O_2$ fuel cell using acid doped polybenzimidazole as polymer electrolyte", Electrochim. Acta., 41, 193 (1996). https://doi.org/10.1016/0013-4686(95)00313-4
  46. J. Wainright, J. Wang, D. Weng, R. Savinell, and M. Litt, "Acid-doped polybenzimidazoles: a new polymer electrolyte", J. Electrochem. Soc., 142, L121 (1995). https://doi.org/10.1149/1.2044337
  47. S. Y. Lee, H. J. Kim, S. Y. Nam, and S. Y. Nam, "Synthetic strategies for high performance hydrocarbon polymer electrolyte membranes (PEMs) for fuel cells", Membr. J., 26, 1 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.1.1
  48. S. E. Kang and C. H. Lee, "Perfluorinated sulfonic acid ionomer-PTFE pore-filling membranes for polymer electrolyte membrane fuel cells", Membr. J., 25, 171 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.2.171
  49. J. Bijwe, M. K. Gupta, T. Parida, and P. Trivedi, "Design and development of advanced polymer composites as high performance tribo-materials based on blends of PEK and ABPBI", Wear., 342, 65 (2015).
  50. Y. Zhai, H. Zhang, Y. Zhang, and D. Xing, "A novel $H_3PO_4$/Nafion-PBI composite membrane for enhanced durability of high temperature PEM fuel cells", J. Power Sources., 169, 259 (2007). https://doi.org/10.1016/j.jpowsour.2007.03.004
  51. S. Kwon and S. G. Lee, "Density functional theory study on polybenzimidazole with sulfonic acid functional group for PEMFC applications", Int. J. Eng. Res. Appl., 52, 137 (2015).
  52. M. Song, X. Lu, Z. Li, G. Liu, X. Yin, and Y. Wang, "Compatible ionic crosslinking composite membranes based on SPEEK and PBI for high temperature proton exchange membranes", Int. J. Hydrogen Energy., 41, 12069 (2016). https://doi.org/10.1016/j.ijhydene.2016.05.227
  53. J. Park, L. Wang, S. G. Advani, and A. K. Prasad, "Mechanical stability of $H_3PO_4$-doped PBI/hydrophilic- pretreated PTFE membranes for high temperature PEMFCs", Electrochim. Acta., 120, 30 (2014). https://doi.org/10.1016/j.electacta.2013.12.030
  54. A. Modestov, M. Tarasevich, A. Y. Leykin, and V. Y. Filimonov, "MEA for alkaline direct ethanol fuel cell with alkali doped PBI membrane and non-platinum electrodes", J. Power Sources., 188, 502 (2009). https://doi.org/10.1016/j.jpowsour.2008.11.118
  55. B. Xing and O. Savadogo, "Hydrogen/oxygen polymer electrolyte membrane fuel cells (PEMFCs) based on alkaline-doped polybenzimidazole (PBI)", Electrochem Commun., 2, 697 (2000). https://doi.org/10.1016/S1388-2481(00)00107-7
  56. M. Moradi, A. Moheb, M. Javanbakht, and K. Hooshyari, "Experimental study and modeling of proton conductivity of phosphoric acid doped PBI-Fe 2 TiO 5 nanocomposite membranes for using in high temperature proton exchange membrane fuel cell (HT-PEMFC)", Int. J. Hydrogen Energy., 41, 2896 (2016). https://doi.org/10.1016/j.ijhydene.2015.12.100
  57. Y. Devrim, "Development of polybenzimidazole/ graphene oxide composite membranes for high temperature PEM fuel cells", (2016).
  58. V. Kurdakova, E. Quartarone, P. Mustarelli, A. Magistris, E. Caponetti, and M. Saladino, "PBI-based composite membranes for polymer fuel cells", J. Power Sources., 195, 7765 (2010). https://doi.org/10.1016/j.jpowsour.2009.09.064
  59. S. Lai, J. Park, S. Cho, M. Tsai, H. Lim, and K. Chen, "Mechanical property enhancement of ultra- thin PBI membrane by electron beam irradiation for PEM fuel cell", Int. J. Hydrogen Energy., 41, 9556 (2016). https://doi.org/10.1016/j.ijhydene.2016.04.111
  60. T. Lim and H. Kim, "Development and application of high temperature proton exchange membrane fuel cells", Hydrog New Energy Soc., 18, 439 (2007).
  61. V. Gryaznov, "Hydrogen permeable palladium membrane catalysts", Platin Met Rev., 30, 68 (1986).
  62. S. P. Badwal and F. T. Ciacchi, "Ceramic membrane technologies for oxygen separation", Adv. Mater., 13, 993 (2001). https://doi.org/10.1002/1521-4095(200107)13:12/13<993::AID-ADMA993>3.0.CO;2-#
  63. D. J. Kim and S. Y. Nam, "Development trend of membrane filter using ceramic fibers", Membr. J., 26, 87 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.2.87
  64. D. R. Pesiri, B. Jorgensen, and R. C. Dye, "Thermal optimization of polybenzimidazole meniscus membranes for the separation of hydrogen, methane, and carbon dioxide", J. Membr. Sci., 218, 11 (2003). https://doi.org/10.1016/S0376-7388(03)00129-7
  65. S. Han, H. Park, and Y. Lee, "Recent technology trends of polymeric gas separation membranes", KIC News., 19, 284 (2008).
  66. N. Ahmad, C. Leo, A. Ahmad, and A. W. Mohammad, "Separation of $CO_2$ from hydrogen using membrane gas absorption with PVDF/PBI membrane", Int. J. Hydrogen Energy., 41, 4855 (2016). https://doi.org/10.1016/j.ijhydene.2015.11.054
  67. S. Kumbharkar and K. Li, "Structurally modified polybenzimidazole hollow fibre membranes with enhanced gas permeation properties", J. Membr. Sci., 415, 793 (2012).
  68. H. Borjigin, K. A. Stevens, R. Liu, J. D. Moon, A. T. Shaver, S. Swinnea, B. D. Freeman, J. Riffle, and J. E. McGrath, "Synthesis and characterization of polybenzimidazoles derived from tetraaminodiphenylsulfone for high temperature gas separation membranes", Polymer, 71, 135 (2015). https://doi.org/10.1016/j.polymer.2015.06.021
  69. X. Li, R. P. Singh, K. W. Dudeck, K. A. Berchtold, and B. C. Benicewicz, "Influence of polybenzimidazole main chain structure on $H_2/CO_2$ separation at elevated temperatures", J. Membr. Sci., 461, 59 (2014). https://doi.org/10.1016/j.memsci.2014.03.008
  70. N. Ahmad, C. Leo, M. Junaidi, and A. Ahmad, "PVDF/PBI membrane incorporated with SAPO-34 zeolite for membrane gas absorption", J. Taiwan Inst. Chem. Eng., 63, 143 (2016). https://doi.org/10.1016/j.jtice.2016.02.023
  71. M. Sadeghi, M. A. Semsarzadeh, and H. Moadel, "Enhancement of the gas separation properties of polybenzimidazole (PBI) membrane by incorporation of silica nano particles", J. Membr. Sci., 331, 21 (2009). https://doi.org/10.1016/j.memsci.2008.12.073
  72. K. A. Berchtold, R. P. Singh, J. S. Young, and K. W. Dudeck, "Polybenzimidazole composite membranes for high temperature synthesis gas separations", J. Membr. Sci., 415, 265 (2012).
  73. B. M. Lee, D. J. Kim, and S. Y. Nam, "Effect of bulky and hydroxyl groups on gas separation performance of polyimide membranes", J. Nanosci Nanotechnol., 15, 2351 (2015). https://doi.org/10.1166/jnn.2015.10260
  74. J. H. Kim, C. H. Kim, and G. H. Lee, "The structures and permeation properties of polysulfone hollow fiber membranes prepared by various spinning conditions", Polymer(Korea), 14, 80 (1990).
  75. H. J. Lee, M. J. Go, D. J. Kim, and S. Y. Nam, "Effect of non-ionic additive on morphology and gas permeation properties of polysulfone hollow fiber membrane", Membr. J., 22, 224 (2012).
  76. A. Livingston, L. Peeva, and P. Silva, "Organic solvent nanofiltration", Membrane Technology in the Chemical Industry., 2 (2006).
  77. R. M. Gould, L. S. White, and C. R. Wildemuth, "Membrane separation in solvent lube dewaxing", Environ. Prog., 20, 12 (2001). https://doi.org/10.1002/ep.670200110
  78. I. B. Valtcheva, S. C. Kumbharkar, J. F. Kim, Y. Bhole, and A. G. Livingston, "Beyond polyimide: crosslinked polybenzimidazole membranes for organic solvent nanofiltration (OSN) in harsh environments", J. Membr. Sci., 457, 62 (2014). https://doi.org/10.1016/j.memsci.2013.12.069
  79. K. Y. Wang and T. Chung, "Fabrication of polybenzimidazole (PBI) nanofiltration hollow fiber membranes for removal of chromate", J. Membr. Sci., 281, 307 (2006). https://doi.org/10.1016/j.memsci.2006.03.045
  80. K. Y. Wang, Y. Xiao, and T. Chung, "Chemically modified polybenzimidazole nanofiltration membrane for the separation of electrolytes and cephalexin", Chem. Eng. Sci., 61, 5807 (2006). https://doi.org/10.1016/j.ces.2006.04.031
  81. F. S. Model and L. A. Lee, "PBI reverse osmosis membranes: An initial survey", 285 (1972).
  82. S. K. Hong, S. H. Lee, J. H. Kim, J. H. Kim, and Y. G. Ju, "Evolution of RO process for green future", KIC News, 14, 9 (2011).
  83. O. Bamaga, A. Yokochi, B. Zabara, and A. Babaqi, "Hybrid FO/RO desalination system: Preliminary assessment of osmotic energy recovery and designs of new FO membrane module configurations", Desalination., 268, 163 (2011). https://doi.org/10.1016/j.desal.2010.10.013
  84. J. L. Prante, J. A. Ruskowitz, A. E. Childress, and A. Achilli, "RO-PRO desalination: an integrated low-energy approach to seawater desalination", Appl. Energy., 120, 104 (2014). https://doi.org/10.1016/j.apenergy.2014.01.013
  85. W. He, Y. Wang, V. Elyasigomari, and M. H. Shaheed, "Evaluation of the detrimental effects in osmotic power assisted reverse osmosis (RO) desalination", Renewable Energy., 93, 608 (2016). https://doi.org/10.1016/j.renene.2016.02.067
  86. S. H. Kook, S. J. Kim, J. W. Lee, M. H. Hwang, and I. S. Kim, "Structure parameter change estimation of a forward osmosis membrane under pressurized conditions in pressure-assisted forward osmosis (PAFO)", Membr. J., 187 (2016).
  87. M. F. Flanagan and I. C. Escobar, "Novel charged and hydrophilized polybenzimidazole (PBI) membranes for forward osmosis", J. Membr. Sci., 434, 85 (2013). https://doi.org/10.1016/j.memsci.2013.01.039
  88. S. Zhao, L. Zou, C. Y. Tang, and D. Mulcahy, "Recent developments in forward osmosis: opportunities and challenges", J. Membr. Sci., 396, 1 (2012). https://doi.org/10.1016/j.memsci.2011.12.023
  89. D. J. Kim and S. Y. Nam, "Development and application trend of bipolar membrane for electrodialysis", Membr. J., 23, 319 (2013).
  90. C. S. Lee, H. S. Shin, J. H. Jeon, S. Y. Jeong, and J. W. Rhim, "Recent development trends of cation exchange membrane materials", Membr. J., 12, 1 (2002).
  91. T. Xu, "Ion exchange membranes: state of their development and perspective", J. Membr. Sci., 263, 1 (2005). https://doi.org/10.1016/j.memsci.2005.05.002
  92. J. G. Kim, S. H. Lee, C. H. Ryu, and G. J. Hwang, "Preparation of cation exchange membrane using polybenzimidazole and its characteristic", Membr. J., 22, 265 (2012).
  93. C. G. Morandi, R. Peach, H. M. Krieg, and J. Kerres, "Novel imidazolium-functionalized anionexchange polymer PBI blend membranes", J. Membr. Sci., 476, 256 (2015). https://doi.org/10.1016/j.memsci.2014.11.049
  94. C. G. Morandi, R. Peach, H. M. Krieg, and J. Kerres, "Novel morpholinium-functionalized anionexchange PBI-polymer blends", J. Mater. Chem. A Mater. Energy Sustain., 3, 1110 (2015). https://doi.org/10.1039/C4TA05026F
  95. Y. S. Jeon and J. W. Rhim, "Study on hypochlorite production using newly synthesized bipolar membranes in electrolysis process", Polymer (Korea), 40, 142 (2016). https://doi.org/10.7317/pk.2016.40.1.142
  96. B. Allabergenov, O. Tursunkulov, A. Abidov, S. Jeong, and S. Kim, "Mechanical properties of stainless steel composites with titanium carbonitride consolidated by spark plasma sintering", J. Composite Mater., 50, 1567 (2016). https://doi.org/10.1177/0021998315574756