DOI QR코드

DOI QR Code

Electrospun ZnO hybrid nanofibers for photodegradation of wastewater containing organic dyes: A review

  • Panthi, Gopal (Department of Chemistry, Inha University) ;
  • Park, Mira (Department of Organic Materials and Fiber Engineering, Chonbuk National University) ;
  • Kim, Hak-Yong (Department of Organic Materials and Fiber Engineering, Chonbuk National University) ;
  • Lee, Seul-Yi (Department of Chemistry, Inha University) ;
  • Park, Soo-Jin (Department of Chemistry, Inha University)
  • Received : 2014.01.24
  • Accepted : 2014.03.30
  • Published : 2015.01.25

Abstract

Heterogeneous photocatalysis involving zinc oxide (ZnO) nanofibers (NFs) has emerged as a new promising route for the cost-effective treatment of organic pollutants and the transformation of hazardous substances into benign forms. In general, it involves the development of smart approaches to reduce the harmful effects of highly toxic pollutants, which are difficult to treat. This review presents research that has been focused on the fabrication of electrospun ZnO hybrid NFs and their applications in the photodegradation of different organic pollutants that are discharged into wastewater from textile and other industrial processes. Furthermore, a short discussion on charge transfer mechanisms during photocatalytic reactions is also presented.

Keywords

Acknowledgement

Supported by : Korea Ministry of Environment, Korea Ministry of Commerce, Industry and Energy

References

  1. R. Zhang, Y. Zhang, Z.C. Dong, S. Jiang, C. Zhang, L.G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J.L. Yang, J.G. Hou, Nature 498 (2013) 82. https://doi.org/10.1038/nature12151
  2. R.F. Service, Science 290 (2000) 1526. https://doi.org/10.1126/science.290.5496.1526
  3. N. Lane, J. Nanopart. Res. 3 (2001) 95. https://doi.org/10.1023/A:1017951230941
  4. P.M. Petroff, A. Lorke, A. Imamoglue, Phys. Today 54 (2001) 46.
  5. S.A. Empedocles, R. Neuhauser, K. Shimizu, M.G. Bawendi, Adv. Mater. 11 (1999) 1243. https://doi.org/10.1002/(SICI)1521-4095(199910)11:15<1243::AID-ADMA1243>3.0.CO;2-2
  6. F.H. Julien, A. Alexandrou, Science 282 (1998) 1429. https://doi.org/10.1126/science.282.5393.1429
  7. P.L. McEuen, Science 278 (1997) 1729. https://doi.org/10.1126/science.278.5344.1729
  8. M.M. Alkaisi, R.J. Blaikie, S.J. McNab, Adv. Mater. 13 (2001) 877. https://doi.org/10.1002/1521-4095(200107)13:12/13<877::AID-ADMA877>3.0.CO;2-W
  9. J. Jiang, K. Bonsick, M. Maillard, L. Brus, J. Phys. Chem. B 107 (2003) 9964.
  10. M.J. Leven, J. Korlach, S.W. Turner, M. Foquet, H.G. Craighead, W.W. Webb, Science 299 (2003) 682. https://doi.org/10.1126/science.1079700
  11. J. Bao, A.V. Bragas, J.K. Furdyna, R. Merlin, Nat. Mater. 2 (2003) 175. https://doi.org/10.1038/nmat839
  12. A.N. Cleland, J.S. Aldridge, D.C. Driscoll, A.C. Gossard, Appl. Phys. Lett. 81 (2002) 1699. https://doi.org/10.1063/1.1497436
  13. M.N. Leuenberger, D. Loss, Nature 410 (2001) 789. https://doi.org/10.1038/35071024
  14. M. Bayer, P. Hawrylak, K. Hinzer, S. Farad, M. Korkusinski, Z.R. Wasilewski, O. Stern, A. Forchel, Science 291 (2001) 451. https://doi.org/10.1126/science.291.5503.451
  15. W. Wang, T. Lee, M.A. Reed, Phys. Rev. B: Condens. Matter 68 (2003), 3541/1. https://doi.org/10.1103/PhysRevB.68.035411
  16. N.D. Gupta, S. Maity, K.K. Chattopadhyay, J. Ind. Eng. Chem. (2014), 10.1016/j.jiec.2013.11.067.
  17. J.A. Stroscio, D.M. Eigler, Science 254 (1991) 1319. https://doi.org/10.1126/science.254.5036.1319
  18. T.V. Torchynska, J. Appl. Phys. 92 (2002) 4019. https://doi.org/10.1063/1.1502183
  19. A.I. Yanson, G.R. Bollinger, H.E. Van Den Brom, N. Agrait, J.M.V. Ruitenbeek, Nature 395 (1998) 783. https://doi.org/10.1038/27405
  20. S.Y. Lee, B.J. Kim, S.J. Park, J. Solid State Chem. 199 (2013) 258. https://doi.org/10.1016/j.jssc.2012.12.028
  21. S.Y. Lee, S.J. Park, J. Ind. Eng. Chem. 19 (2013) 1761. https://doi.org/10.1016/j.jiec.2013.07.012
  22. S.J. Park, S.Y. Lee, J. Colloid Interface Sci. 346 (2010) 194. https://doi.org/10.1016/j.jcis.2010.02.047
  23. B.S. Choi, J. Ind. Eng. Chem. 20 (2014) 96. https://doi.org/10.1016/j.jiec.2013.04.021
  24. J.R. Choi, Y.S. Lee, S.J. Park, J. Ind. Eng. Chem. (2014), http://dx.doi.org/10.1016/j.jiec.2013.12.029.
  25. M.M. Rahman, S.B. Khan, H.M. Marwani, A.M. Asiri, K.A. Alamry, M.A. Rub, A. Khan, A.A.P. Khan, A.H. Qusti, J. Ind. Eng. Chem. 20 (2014) 1071. https://doi.org/10.1016/j.jiec.2013.06.044
  26. S.M. Hosseinpour-Mashkani, M. Salavati-Niasari, F. Mohandes, J. Ind. Eng. Chem. (2014), http://dx.doi.org/10.1016/j.jiec.2013.11.067.
  27. X.F. Duan, Y. Huang, Y. Cui, J.F. Wang, C.M. Lieber, Nature 409 (2009) 66.
  28. H. Guo, J. Chen, W. Weng, Z. Zheng, D. Wang, J. Ind. Eng. Chem. (2013), http://dx.doi.org/10.1016/j.jiec.2013.11.047.
  29. G. Panthi, N.A.M. Barakat, K.A. Khalid, A. Yousef, K.S. Jeon, H.Y. Kim, Ceram. Int. 39 (2013) 1469. https://doi.org/10.1016/j.ceramint.2012.07.091
  30. Y. Yang, J.Wen, J.Wei, R. Xion, J. Shi, C. Pan, ACS Appl. Mater. Interfaces 5 (2013) 6201. https://doi.org/10.1021/am401167y
  31. G. Panthi, N.A.M. Barakat, K.A. Khalid, S. Akhter, Y.R. Choi, H.Y. Kim, Ceram. Int. 39 (2013) 2239. https://doi.org/10.1016/j.ceramint.2012.08.068
  32. H.W.Liang,W.J.Zhang, Y.N.Ma,X.Cao, Q.F.Guan,W.P. Xu, ACS Nano 5 (2011)8148. https://doi.org/10.1021/nn202789f
  33. X.F. Lu, C. Wang, Y. Wei, Small 5 (2009) 2349. https://doi.org/10.1002/smll.200900445
  34. A. Khan, A.A.P. Khan, A.M. Asiri, M.A. Rub, N. Azum, S.B. Khan, H.M. Marwani, J. Ind. Eng. Chem. 20 (2014) 2301. https://doi.org/10.1016/j.jiec.2013.10.005
  35. Y. Li, F. Qian, J. Xiang, C.M. Lieber, Mater. Today 9 (2006) 18.
  36. V. Svrcek, H. Fujihara, M. Kondo, Acta Mater 20 (2009) 5986.
  37. H.R. Yu, J.G. Kim, J.S. Im, T.S. Bae, Y.S. Lee, J. Ind. Eng. Chem. 18 (2012) 674. https://doi.org/10.1016/j.jiec.2011.11.064
  38. J.S. Young, K. Jun, J. Ind. Eng. Chem. 18 (2012) 193. https://doi.org/10.1016/j.jiec.2011.11.009
  39. Y.G. Li, B. Tan, Y.Y. Wu, Nano Lett. 8 (2008) 265. https://doi.org/10.1021/nl0725906
  40. C.K. Chan, H. Peng, G. Liu, K. Mcllwrath, X.F. Zhang, R.A. Huggins, Y. Cui, Nat. Nanotechnol. 3 (2008) 31. https://doi.org/10.1038/nnano.2007.411
  41. H. Wu, D. Lin, R. Zhang, W. Pan, Chem. Mater. 19 (2007) 1895. https://doi.org/10.1021/cm062286y
  42. S. Kim, Y.S. Chung, F.L. Jin, S.J. Park, J. Ind. Eng. Chem. (2014), http://dx.doi.org/10.1016/j.jiec.2013.12.032.
  43. S. Suren, U. Pancharoen, S. Kheawhom, J. Ind. Eng. Chem. 20 (2014) 2584. https://doi.org/10.1016/j.jiec.2013.10.045
  44. F.Du,H.Wang,W.Zhao, D. Li,D.Kong, J.Yang, Y.Zhang, Biomaterials 33(2012) 762. https://doi.org/10.1016/j.biomaterials.2011.10.037
  45. K. Krishnamoorthy, M. Veerapandian, L.H. Zhang, K. Yun, S.J. Kim, J. Ind. Eng. Chem. (2014), http://dx.doi.org/10.1016/j.jiec.2013.12.043.
  46. A.H. Qusti, J. Ind. Eng. Chem. (2014), http://dx.doi.org/10.1016/j.jiec.2013.12.025.
  47. S. Zohoori, L. Karimi, S. Ayazjyazdi, J. Ind. Eng. Chem. (2013), http://dx.doi.org/10.1016/j.jiec.2013.10.062 (in press).
  48. G. Panthi, N.A.M. Barakat, S.S. Al-Deyab, M. El-Newehy, D.R. Pandeya, H.Y. Kim, J. Appl. Polym. Sci. 127 (2013) 2025. https://doi.org/10.1002/app.37639
  49. H.H. Chun, W.K. Jo, J. Ind. Eng. Chem. 20 (2014) 1010. https://doi.org/10.1016/j.jiec.2013.06.036
  50. P. Chen, Colloids Surf. A: Physicochem. Eng. Aspect 261 (2005) 3. https://doi.org/10.1016/j.colsurfa.2004.12.048
  51. Y. Liu, M. Park, H.K. Shin, B. Pant, S.J. Park, H.Y. Kim, Mat. Lett. 132 (2014) 23. https://doi.org/10.1016/j.matlet.2014.06.041
  52. Y.M. Shin, M.M. Hohman, M.P. Brenner, Appl. Phys. Lett. 78 (2001) 1. https://doi.org/10.1063/1.1337631
  53. F. Memarian, M. Latifi, M. Amani-Tehran, J. Ind. Eng. Chem. 20 (2014) 1886. https://doi.org/10.1016/j.jiec.2013.09.008
  54. D. Li, J.T. McCann, Y.N. Xia, J. Am. Ceram. Soc. 89 (2006) 1861. https://doi.org/10.1111/j.1551-2916.2006.00989.x
  55. R. Dersch, M. Graeser, A. Greiner, J.H. Wendorff, Aust. J. Chem. 60 (2007) 719. https://doi.org/10.1071/CH07082
  56. J. Doshi, D.H. Reneker, J. Electrostat. 35 (1995) 151. https://doi.org/10.1016/0304-3886(95)00041-8
  57. D. Li, Y.N. Xia, Adv. Mater. 16 (2004) 1151. https://doi.org/10.1002/adma.200400719
  58. Z.M. Huang, Y.Z. Zhang, M. Kotaki, Compos. Sci. Technol. 63 (2003) 2223. https://doi.org/10.1016/S0266-3538(03)00178-7
  59. R. Ramaseshan, S. Sundarrajan, R. Jose, J. Appl. Phys. 102 (2007) 111101. https://doi.org/10.1063/1.2815499
  60. D. Li, Y.N. Xia, Nano Lett. 3 (2003) 555. https://doi.org/10.1021/nl034039o
  61. Y. Sun, D.Y. Khang, F. Hua, K. Hurley, R.G. Nuzzo, J.A. Rogers, Adv. Funct. Mater. 15 (2005) 30. https://doi.org/10.1002/adfm.200400411
  62. C. Shao, H. Guan, Y. Liu, X. Li, X. Yang, J. Solid State Chem. 177 (2004) 2628. https://doi.org/10.1016/j.jssc.2004.04.003
  63. Y. Ding, C. Hou, B. Li, Y. Lei, Electroanalysis 23 (2011) 1245. https://doi.org/10.1002/elan.201000660
  64. M. Zhi, A. Manivannan, F. Meng, N. Wu, J. Power Sources 208 (2012) 345. https://doi.org/10.1016/j.jpowsour.2012.02.048
  65. D. Lin, H. Wu, W. Pan, Adv. Mater. 19 (2007) 3968. https://doi.org/10.1002/adma.200602802
  66. H. Wu, D. Lin, W. Pan, Appl. Phys. Lett. 89 (2006) 133125. https://doi.org/10.1063/1.2355474
  67. H.P. Li, H. Wu, D.D. Lin, J. Am. Ceram. Soc. 92 (2009) 2162. https://doi.org/10.1111/j.1551-2916.2009.03177.x
  68. H.P. Li, H. Wu, W. Pan, Rare Metal Mater. Eng. 38 (2009) 994.
  69. R. Zhang, H. Wu, D. Lin, J. Am. Ceram. Soc. 92 (2009) 2463. https://doi.org/10.1111/j.1551-2916.2009.03223.x
  70. H.P. Li, W. Zhang, B. Li, J. Am. Ceram. Soc. 93 (2010) 2503. https://doi.org/10.1111/j.1551-2916.2010.03841.x
  71. D. Li, T. Herricks, Y.N. Xia, Appl. Phys. Lett. 83 (2003) 4586. https://doi.org/10.1063/1.1630844
  72. H.W. Lu, L. Yu, W. Zeng, Electrochem. Solid State Lett. 11 (2008) A140. https://doi.org/10.1149/1.2932054
  73. B. Ding, M. Yamazaki, S. Shiratori, Sens. Actuators, B 106 (2014) 477.
  74. C.L. Shao, X.H. Yang, H.Y. Guan, Inorg. Chem. Commun. 7 (2004) 625. https://doi.org/10.1016/j.inoche.2004.03.006
  75. S.H. Zhan, D.R. Chen, X.L. Jiao, J. Colloid Interface Sci. 308 (2007) 265. https://doi.org/10.1016/j.jcis.2006.12.026
  76. Y. Zhu, J.C. Zhang, J. Zhai, Thin Solid Films 510 (2006) 271. https://doi.org/10.1016/j.tsf.2005.09.004
  77. S.J. Park, S. Bhargava, E.T. Bender, J. Mater. Res. 23 (2008) 1193. https://doi.org/10.1557/JMR.2008.0173
  78. S.H. Lee, M. Jung, J.S. Im, Res. Chem. Intermed. 36 (2010) 59.
  79. S. Jeon, J. Yun, Y.S. Lee, H.I. Kim, J. Ind. Eng. Chem. 18 (2012) 487. https://doi.org/10.1016/j.jiec.2011.11.068
  80. H. Wu, W. Pan, J. Am. Ceram. Soc. 89 (2006) 699. https://doi.org/10.1111/j.1551-2916.2005.00735.x
  81. H. Wu, D. Lin, R. Zhang, J. Am. Ceram. Soc. 91 (2008) 656. https://doi.org/10.1111/j.1551-2916.2007.02162.x
  82. H. Yoneyama, Y. Yamashita, H. Tamura, Nature 282 (1979) 817. https://doi.org/10.1038/282817a0
  83. Y. Shavisi, S. Sharifnia, M. Zendehzaban, M. Lobabi Mirghavami, S. Kakehazar, J. Ind. Eng. Chem. (2013), http://dx.doi.org/10.1016/j.jiec.2013.11.011.
  84. M.M. Rahman, S.B. Khan, H.M. Marwani, A.M. Asiri, K.A. Alamry, M.A. Rub, A. Khan, A.A.P. Khan, N. Azum, J. Ind. Eng. Chem. 20 (2014) 2278. https://doi.org/10.1016/j.jiec.2013.09.059
  85. M. Fathinia, A.R. Khatae, J. Ind. Eng. Chem. 19 (2013) 1525. https://doi.org/10.1016/j.jiec.2013.01.019
  86. T. Cao, Y. Li, C. Wang, C. Shao, Y. Liu, Langmuir 27 (2011) 2946. https://doi.org/10.1021/la104195v
  87. J. Mu, C. Shao, Z. Guo, Z. Zhang, M. Zhang, P. Zhang, B. Chen, Y. Liu, ACS Appl. Mater. Interfaces 3 (2011) 590. https://doi.org/10.1021/am101171a
  88. X. Yang, C. Shao, H. Guan, X. Li, J. Gong, Inorg. Chem. Commun. 7 (2004) 176. https://doi.org/10.1016/j.inoche.2003.10.035
  89. M.H. Habibi, A.H. Habibi, J. Ind. Eng. Chem. 20 (2014) 68. https://doi.org/10.1016/j.jiec.2013.04.025
  90. N. Modirshahla, A. Hassani, M.A. Behnajady, R. Rahbarfam, Desalination 271 (2011) 187. https://doi.org/10.1016/j.desal.2010.12.027
  91. J. Nishio, M. Tokumura, H.T. Znad, Y. Kawase, J. Hazard. Mater. 138 (2006) 106. https://doi.org/10.1016/j.jhazmat.2006.05.039
  92. L. Zheng, Y. Zheng, C. Chen, Y. Zhan, X. Lin, Q. Zheng, K. Wei, J. Zhu, Inorg. Chem. 48 (2009) 1819. https://doi.org/10.1021/ic802293p
  93. A.G. Macdiarmid, Appl. Phys. A 89 (2007) 427. https://doi.org/10.1007/s00339-007-4204-5
  94. D. Lin, W. Pan, H. Wu, J. Am. Ceram. Soc. 90 (2007) 71. https://doi.org/10.1111/j.1551-2916.2006.01366.x
  95. D. Lin, H. Wu, R. Zhang, W. Pan, Chem. Mater. 21 (2009) 3479. https://doi.org/10.1021/cm900225p
  96. M. Shakouri-Arani, M. Salavati-Niasari, J. Ind. Eng. Chem. (2013), http://dx.doi.org/10.1016/j.jiec.2013.11.063.
  97. H. Zeng, P. Liu, W. Cai, S. Yang, X. Xu, J. Phys. Chem. C 112 (2008) 9620.
  98. H. Li, X. Qin, W. Zhang, W. Pan, J. Am. Ceram. Soc. 95 (2012) 217. https://doi.org/10.1111/j.1551-2916.2011.04751.x
  99. K. Vignesh, M. Rajarajan, A. Suganthi, J. Ind. Eng. Chem. (2013), http://dx.doi.org/10.1016/j.jiec.2013.11.063.
  100. C.C. Pei, W.W.-F. Leung, Catal. Commun. 37 (2013) 100. https://doi.org/10.1016/j.catcom.2013.03.029
  101. Z. Zhang, C. Shao, X. Li, L. Zhang, H. Xue, C. Wang, Y. Liu, J. Phys. Chem. C 114 (2010) 7920.
  102. M.M. Khan, S.A. Ansari, J. Lee, M.H. Cho, J. Ind. Eng. Chem. 19 (2013) 1845. https://doi.org/10.1016/j.jiec.2013.02.030
  103. Z. Wang, Z. Li, H. Zhang, C. Wang, Catal. Commun. 11 (2009) 257. https://doi.org/10.1016/j.catcom.2009.10.006
  104. Z. Zhang, C. Shao, X. Li, C. Wang, M. Zhang, Y. Liu, ACS Appl. Mater. Interfaces 2 (2010) 2915. https://doi.org/10.1021/am100618h
  105. C. Li, R. Chen, X. Zhang, S. Shu, J. Xiong, Y. Zheng, W. Dong, Mater. Lett. 65 (2011) 1327. https://doi.org/10.1016/j.matlet.2011.01.075
  106. C. Li, X. Zhang, W. Dong, Y. Liu, Mater. Lett. 80 (2012) 145. https://doi.org/10.1016/j.matlet.2012.04.105
  107. Z. Wang, S.W. Cao, S. Chye, J. Loo, C. Xue, Cryst. Eng. Commun. 15 (2013) 5688. https://doi.org/10.1039/c3ce40523k
  108. D. Lin, H. Wu, R. Zhang, W. Zhang, W. Pan, J. Am. Ceram. Soc. 93 (2010) 3384. https://doi.org/10.1111/j.1551-2916.2010.03855.x
  109. H. Liu, J. Yang, J. Liang, Y. Huang, C. Tang, J. Am. Ceram. Soc. 91 (2008) 1287. https://doi.org/10.1111/j.1551-2916.2008.02299.x
  110. M. Khraisheh, J. Kim, L. Campos, A.H. Al-Muhtaseb, A. Al-Hawari, M.A. Ghouti, G.M. Walker, J. Ind. Eng. Chem. 20 (2014) 979. https://doi.org/10.1016/j.jiec.2013.06.032
  111. S. Qadri, A. Ganoe, Y. Haik, J. Hazard. Mater. 169 (2009) 318. https://doi.org/10.1016/j.jhazmat.2009.03.103
  112. http://www.who.int/infectious-disease-report/pages/textonly.html.
  113. M. Siddique, R. Farooq, A. Shaheen, J. Chem. Soc. Pak. 33 (2011) 284.
  114. J.L. Wang, L.J. Xu, Crit. Rev. Environ. Sci. Technol. 42 (2012) 251. https://doi.org/10.1080/10643389.2010.507698
  115. P. Sharma, H. Kaur, M. Sharma, V. Sahore, Environ. Monit. Assess. 183 (2011) 151. https://doi.org/10.1007/s10661-011-1914-0
  116. A.K. Verma, R.R. Dash, P. Bhunia, J. Environ. Manage. 93 (2012) 154. https://doi.org/10.1016/j.jenvman.2011.09.012
  117. R.M. Christie, Environmental Aspects of Textile Dyeing, CRC Press, Cambridge, 2007.
  118. K. Hunger, Industrial Dyes: Chemistry, Properties, Applications, Wiley-VCH, Cambridge, 2003.
  119. E.N. Abrahart, Dyes and Their Intermediates, Edward Arnold, New York, 1977.
  120. H. Zillinger, Color Chemistry-Synthesis, Properties and Applications of Organic Dyes and Pigments, VCH Publishers, New York, 1987.
  121. S. Hildenbrand, F.W. Schmahl, R. Woldarz, R. Kimmel, P.C. Dartsch, Int. Arch. Occup. Environ. Health 72 (1992) 52.
  122. V.K. Gupta, J. Environ. Manage. 90 (2009) 2313. https://doi.org/10.1016/j.jenvman.2008.11.017
  123. H. Lee, Y. Park, M. Kang, J. Ind. Eng. Chem. 19 (2013) 1162. https://doi.org/10.1016/j.jiec.2012.12.013
  124. J.H. Li, D.X. Zhao, X.Q. Meng, Z.Z. Zhang, J.Y. Zhang, D.Z. Shen, Y.M. Lu, X.W. Fan, J. Phys. Chem. B 110 (2006) 14685. https://doi.org/10.1021/jp061563l
  125. H.C. Liao, P.C. Kuo, C.C. Lin, S.Y. Chen, J. Vac. Sci. Technol. B 24 (2006) 2198. https://doi.org/10.1116/1.2232456
  126. Y.H. Ni, S. Yang, J.M. Hong, L. Zhang, W.L. Wu, Z.S. Yang, J. Phys. Chem. C 112 (2008) 8200. https://doi.org/10.1021/jp711539u
  127. Y.J. Hsu, S.Y. Lu, Y.F. Lin, Adv. Funct. Mater. 15 (2005) 1350. https://doi.org/10.1002/adfm.200400563
  128. J.S. Lee, J. Jang, J. Ind. Eng. Chem. 20 (2014) 363. https://doi.org/10.1016/j.jiec.2013.11.050

Cited by

  1. Facile electrospinning construction and characteristics of coaxial nanobelts with simultaneously tunable magnetism and color-tuned photoluminescence bifunctionality vol.26, pp.11, 2015, https://doi.org/10.1007/s10854-015-3557-3
  2. Luminescence of Terbium (III) Complexes Incorporated in Carboxylic Acid Functionalized Polystyrene/BaTiO3Nanocomposites vol.622, pp.1, 2015, https://doi.org/10.1080/15421406.2015.1096988
  3. Hierarchical Composite Polyaniline–(Electrospun Polystyrene) Fibers Applied to Heavy Metal Remediation vol.7, pp.13, 2015, https://doi.org/10.1021/acsami.5b00326
  4. Cu0- doped TiO2 nanofibers as potential photocatalyst and antimicrobial agent vol.26, pp.None, 2015, https://doi.org/10.1016/j.jiec.2014.11.036
  5. Role of ZnO on nylon 6 surface and the photocatalytic efficiency of methylene blue for wastewater treatment vol.294, pp.7, 2015, https://doi.org/10.1007/s00396-016-3881-z
  6. Thin film zinc oxide gas sensor fabricated using near-field electrospray vol.6, pp.12, 2015, https://doi.org/10.1063/1.4971273
  7. The Applications of Morphology Controlled ZnO in Catalysis vol.6, pp.12, 2015, https://doi.org/10.3390/catal6120188
  8. Electrospinning: a facile technique for fabricating functional nanofibers for environmental applications vol.5, pp.1, 2015, https://doi.org/10.1515/ntrev-2015-0065
  9. Grain boundary engineering in electrospun ZnO nanostructures as promising photocatalysts vol.18, pp.34, 2015, https://doi.org/10.1039/c6ce00693k
  10. Photodegradation of Molasses Wastewater Using TiO2-ZnO Nanohybrid Photocatalyst Supported on Activated Carbon vol.203, pp.11, 2015, https://doi.org/10.1080/00986445.2016.1201659
  11. Recent Advances in the Synthesis of Metal Oxide Nanofibers and Their Environmental Remediation Applications vol.2, pp.2, 2017, https://doi.org/10.3390/inventions2020009
  12. Surfactant-Mediated Morphology and Photocatalytic Activity of α-Ag2WO4 Material vol.122, pp.15, 2015, https://doi.org/10.1021/acs.jpcc.8b01898
  13. UV/visible light active CuCrO2 nanoparticle-SnO2 nanofiber p-n heterostructured photocatalysts for photocatalytic applications vol.47, pp.41, 2015, https://doi.org/10.1039/c8dt02850h
  14. Recent advances in energy materials by electrospinning vol.81, pp.2, 2015, https://doi.org/10.1016/j.rser.2017.05.281
  15. Ultrasonic green synthesis of an Ag/CP nanocomposite for enhanced photodegradation effectiveness vol.40, pp.1, 2015, https://doi.org/10.1016/j.ultsonch.2017.09.004
  16. Electrospinning preparation of NiO/ZnO composite nanofibers for photodegradation of binary mixture of rhodamine B and methylene blue in aqueous solution: Central composite optimization vol.32, pp.6, 2015, https://doi.org/10.1002/aoc.4335
  17. Graphene/ZnO nanocomposite with seamless interface renders photoluminescence quenching and photocatalytic activity enhancement vol.53, pp.19, 2015, https://doi.org/10.1007/s10853-018-2605-9
  18. Photocatalytic Hydrogen Evolution via Water Splitting: A Short Review vol.8, pp.12, 2015, https://doi.org/10.3390/catal8120655
  19. Ups and Downs of Water Photodecolorization by Nanocomposite Polymer Nanofibers vol.9, pp.2, 2015, https://doi.org/10.3390/nano9020250
  20. S-, N- and C-doped ZnO as semiconductor photocatalysts: A review vol.13, pp.1, 2015, https://doi.org/10.1007/s11706-019-0453-4
  21. Magnetically Separable Fe 3 O 4 /BiOBr Microspheres: Synthesis, Characterization, and Photocatalytic Performance for Removal of Anionic Azo Dye vol.36, pp.4, 2015, https://doi.org/10.1089/ees.2018.0278
  22. Heterostructured Co0.5Mn0.5Fe2O4-polyaniline nanofibers: highly efficient photocatalysis for photodegradation of methyl orange vol.36, pp.5, 2015, https://doi.org/10.1007/s11814-019-0258-2
  23. Insight into antibiotics removal: Exploring the photocatalytic performance of a Fe3O4/ZnO nanocomposite in a novel magnetic sequential batch reactor vol.237, pp.None, 2015, https://doi.org/10.1016/j.jenvman.2019.02.089
  24. Multinozzle high efficiency electrospinning with the constraint of sheath gas vol.136, pp.22, 2015, https://doi.org/10.1002/app.47574
  25. A hollow fiber prepared through combining polymethacrylate with manganese oxide as reusable oxidant with valence-selfstabilizing function for cation blue decolorization vol.56, pp.8, 2019, https://doi.org/10.1080/10601325.2019.1607379
  26. Preparation of carbonaceous materials from pyrolysis of chicken bones and its application for fuchsine adsorption vol.26, pp.28, 2015, https://doi.org/10.1007/s11356-018-3679-2
  27. Facile 3D Boron Nitride Integrated Electrospun Nanofibrous Membranes for Purging Organic Pollutants vol.9, pp.10, 2019, https://doi.org/10.3390/nano9101383
  28. Photocatalytic Decolorization of Congo Red Wastewater by Magnetic ZnFe2O4/Graphene Nanosheets Composite under Simulated Solar Light Irradiation vol.42, pp.2, 2015, https://doi.org/10.1080/01919512.2019.1635432
  29. X‐ray structure of host‐guest nanosized organotin supramolecular coordination polymer based on cobalt cyanide and quinoxaline as an efficient catalyst for treatment of waste water vol.34, pp.4, 2015, https://doi.org/10.1002/aoc.5521
  30. Removal of reactive black 5 from wastewater by membrane filtration vol.77, pp.6, 2020, https://doi.org/10.1007/s00289-019-02896-8
  31. Recent Developments of Advanced Ti3+-Self-Doped TiO2 for Efficient Visible-Light-Driven Photocatalysis vol.10, pp.6, 2015, https://doi.org/10.3390/catal10060679
  32. Congo red filtration by polyacrylonitrile-based copolymer membranes vol.98, pp.8, 2015, https://doi.org/10.1139/cjc-2020-0066
  33. Hydrophobic effect evolution dependent manipulation of ZnO nanostructures morphology vol.56, pp.4, 2015, https://doi.org/10.1007/s41779-020-00481-1
  34. ZnO nanorod arrays assembled on activated carbon fibers for photocatalytic degradation: Characteristics and synergistic effects vol.261, pp.None, 2015, https://doi.org/10.1016/j.chemosphere.2020.127731
  35. g-C3N4/carbon dot-based nanocomposites serve as efficacious photocatalysts for environmental purification and energy generation: A review vol.276, pp.None, 2015, https://doi.org/10.1016/j.jclepro.2020.124319
  36. A review on the fabrication of several carbohydrate polymers into nanofibrous structures using electrospinning for removal of metal ions and dyes vol.252, pp.None, 2015, https://doi.org/10.1016/j.carbpol.2020.117175
  37. Progress in fabrication of one-dimensional catalytic materials by electrospinning technology vol.93, pp.None, 2015, https://doi.org/10.1016/j.jiec.2020.09.016
  38. Titanium dioxide and graphitic carbon nitride-based nanocomposites and nanofibres for the degradation of organic pollutants in water: a review vol.28, pp.9, 2015, https://doi.org/10.1007/s11356-020-11987-3
  39. Tailoring the Surface Properties of Micro/Nanofibers Using 0D, 1D, 2D, and 3D Nanostructures: A Review on Post‐Modification Methods vol.8, pp.13, 2015, https://doi.org/10.1002/admi.202100430
  40. Tailored functional materials as robust candidates to mitigate pesticides in aqueous matrices—a review vol.282, pp.None, 2015, https://doi.org/10.1016/j.chemosphere.2021.131056
  41. Update on chitosan-based electrospun nanofibers for wastewater treatment: A review vol.2, pp.None, 2015, https://doi.org/10.1016/j.carpta.2021.100064
  42. Synthesis of metal nanoclusters and their application in Hg2+ ions detection: A review vol.424, pp.no.pc, 2015, https://doi.org/10.1016/j.jhazmat.2021.127565
  43. One‐dimensional electrospun ceramic nanomaterials and their sensing applications vol.105, pp.2, 2015, https://doi.org/10.1111/jace.18140