DOI QR코드

DOI QR Code

Hetero-structured semiconductor nanomaterials for photocatalytic applications

  • Lee, Jun Seop (World Class University (WCU) Program of Chemical Convergence for Energy & Environment (C2E2), School of Chemical and Biological Engineering, Seoul National University) ;
  • Jang, Jyongsik (World Class University (WCU) Program of Chemical Convergence for Energy & Environment (C2E2), School of Chemical and Biological Engineering, Seoul National University)
  • Received : 2013.11.04
  • Accepted : 2013.11.13
  • Published : 2014.03.25

Abstract

Photocatalyst represents alternative solutions for renewable energy generation and environmental remediation. For photocatalytic applications, semiconductor nanomaterials emerge as important materials due to their unique structures, chemical and physical properties. Herein, we illustrate a brief overview of the recent progress in the development of hetero-structure nanomaterial based photocatalysts. Particularly, we focus our discussions on various dimensional (0D, 1D, 2D, and 3D) hetero-nanostructure of semiconductors to solve essential problems that are visible light absorption, fast charge separation, effective cocatalyst for charge utilization, and photoelectrochemical stability.

Keywords

References

  1. W. Wiyaratn, W. Appamana, S. Charojrochkul, S. Kaewkuekool, S. Assabumrungrat, Journal of Industrial and Engineering Chemistry 18 (2012) 1819. https://doi.org/10.1016/j.jiec.2012.04.011
  2. J. Chakraborty, S. Sengupta, S. Dasgupta, M. Chakraborty, S. Chosh, S. Mallik, K.L. Das, D. Basu, Journal of Industrial and Engineering Chemistry 18 (2012) 2211. https://doi.org/10.1016/j.jiec.2012.06.020
  3. S.-H. Hong, S.N. Kwon, J.-S. Bae, M.Y. Song, Journal of Industrial and Engineering Chemistry 18 (2012) 61. https://doi.org/10.1016/j.jiec.2011.11.086
  4. T. Arfin, N. Yadav, Journal of Industrial and Engineering Chemistry 19 (2013) 256. https://doi.org/10.1016/j.jiec.2012.08.009
  5. J.H. Kim, Y.J. Hong, B.K. Park, Y.C. Kang, Journal of Industrial and Engineering Chemistry 19 (2013) 1204. https://doi.org/10.1016/j.jiec.2012.12.019
  6. M. Hocevar, U.O. Krasovec, M. Bokalic, M. Topic, W. Veurman, H. Brandt, A. Hinsch, Journal of Industrial and Engineering Chemistry 19 (2013) 1464. https://doi.org/10.1016/j.jiec.2012.12.046
  7. T. Turhan, Y.G. Avcibasi, N. Sahiner, Journal of Industrial and Engineering Chemistry 19 (2013) 1218. https://doi.org/10.1016/j.jiec.2012.12.021
  8. S. Cho, K.-H. Shin, J. Jang, ACS Applied Materials & Interfaces 5 (2013) 9186. https://doi.org/10.1021/am402702y
  9. S.H. Hwang, J. Roh, J. Jang, Chemistry a European Journal 19 (2013) 13120. https://doi.org/10.1002/chem.201301518
  10. O.S. Kwon, T. Kim, J.S. Lee, S.J. Park, H.-W. Park, M. Kang, J.E. Lee, J. Jang, H. Yoon, Small 9 (2013) 248. https://doi.org/10.1002/smll.201201754
  11. V.G. Gandhi, M.K. Mishra, P.A. Joshi, Journal of Industrial and Engineering Chemistry 18 (2012) 1902. https://doi.org/10.1016/j.jiec.2012.05.001
  12. C.-C. Lin, Y.-J. Chiang, Journal of Industrial and Engineering Chemistry 18 (2012) 1233. https://doi.org/10.1016/j.jiec.2011.11.152
  13. K. Hao, B. Shen, Y. Wang, J. Ren, Journal of Industrial and Engineering Chemistry 18 (2012) 1736. https://doi.org/10.1016/j.jiec.2012.03.019
  14. A. Idris, E. Misran, N.M. Yusof, Journal of Industrial and Engineering Chemistry 18 (2012) 2151. https://doi.org/10.1016/j.jiec.2012.06.011
  15. K. Elghniji, M. Ksibi, E. Elaloui, Journal of Industrial and Engineering Chemistry 18 (2012) 178. https://doi.org/10.1016/j.jiec.2011.11.011
  16. I. El Salby, Y. Okour, H.K. Shon, J. Kandasamy, W.E. Lee, J.-H. Kim, Journal of Industrial and Engineering Chemistry 18 (2012) 1033. https://doi.org/10.1016/j.jiec.2011.12.002
  17. Y. Chae, J. Park, S. Mori, M. Suzuki, Journal of Industrial and Engineering Chemistry 18 (2012) 1237. https://doi.org/10.1016/j.jiec.2011.12.013
  18. H. He, A. Chen, M. Chang, L. Ma, C. Li, Journal of Industrial and Engineering Chemistry 19 (2013) 1112. https://doi.org/10.1016/j.jiec.2012.12.006
  19. J.H. Cho, Y. Eom, S.H. Jeon, T.G. Lee, Journal of Industrial and Engineering Chemistry 19 (2013) 144. https://doi.org/10.1016/j.jiec.2012.07.016
  20. J.-K. Oh, Y.-W. Lee, K.-W. Park, Journal of Industrial and Engineering Chemistry 19 (2013) 1391. https://doi.org/10.1016/j.jiec.2013.01.001
  21. A. Fujishima, K. Honda, Nature 238 (1972) 37. https://doi.org/10.1038/238037a0
  22. M.A. Lazar, W.A. Daoud, RSC Advances 3 (2013) 4130. https://doi.org/10.1039/c2ra22665k
  23. K.H. Park, H.I. Kim, P.K. Parhi, D. Mishra, C.W. Nam, J.T. Park, D.J. Kim, Journal of Industrial and Engineering Chemistry 18 (2012) 2036. https://doi.org/10.1016/j.jiec.2012.05.024
  24. H.-S. Roh, U.D. Joshi, Y.-S. Jung, Y.-S. Seo, W.L. Yoon, T.-W. Lee, Journal of Industrial and Engineering Chemistry 18 (2012) 880. https://doi.org/10.1016/j.jiec.2012.01.007
  25. M. Rekha, H.R. Manjunath, N. Nagaraju, Journal of Industrial and Engineering Chemistry 19 (2013) 337. https://doi.org/10.1016/j.jiec.2012.08.022
  26. S.U.M. Khan, M. Al-Shahry, W.B. Ingler Jr., Science 297 (2002) 2243. https://doi.org/10.1126/science.1075035
  27. J. Tian, L. Chen, Y. Yin, X. Wang, J. Dai, Z. Zhu, X. Liu, P. Wu, Surface & Coatings Technology 204 (2009) 205. https://doi.org/10.1016/j.surfcoat.2009.07.008
  28. A. Nezamzadeh-Ejhieh, N. Mozzeni, Journal of Industrial and Engineering Chemistry 19 (2013) 1433. https://doi.org/10.1016/j.jiec.2013.01.006
  29. H. Lee, Y. Park, M. Kang, Journal of Industrial and Engineering Chemistry 19 (2013) 1162. https://doi.org/10.1016/j.jiec.2012.12.013
  30. W.Y. Jung, S.-S. Hong, Journal of Industrial and Engineering Chemistry 19 (2013) 157. https://doi.org/10.1016/j.jiec.2012.07.018
  31. C.-C. Hu, H. Teng, Journal of Catalysis 272 (2010) 1. https://doi.org/10.1016/j.jcat.2010.03.020
  32. Q. Li, T. Kako, J. Ye, Chemical Communications 46 (2010) 5352. https://doi.org/10.1039/c0cc00873g
  33. L.S. Yoong, F.K. Chong, B.K. Dutta, Energy 34 (2009) 1652. https://doi.org/10.1016/j.energy.2009.07.024
  34. N. Kumagai, L. Ni, H. Irie, Chemical Communications 47 (2011) 1884. https://doi.org/10.1039/c0cc03739g
  35. P.K. Parhi, K.H. Park, G. Senayake, Journal of Industrial and Engineering Chemistry 19 (2013) 589. https://doi.org/10.1016/j.jiec.2012.09.028
  36. C. Burda, Y. Lou, X. Chen, A.C.S. Samia, J. Stout, J.L. Gole, Nano Letters 3 (2009) 1049.
  37. L. Zheng, Y. Zheng, C. Chen, Y. Zhan, X. Lin, Q. Zheng, K. Wei, J. Zhu, Inorganic Chemistry 48 (2009) 1819. https://doi.org/10.1021/ic802293p
  38. H.-L. Koh, H.-K. Park, Journal of Industrial and Engineering Chemistry 19 (2013) 73. https://doi.org/10.1016/j.jiec.2012.07.003
  39. O. Ali, A. Namane, A. Hellal, Journal of Industrial and Engineering Chemistry 19 (2013) 1384. https://doi.org/10.1016/j.jiec.2012.12.045
  40. X. Zhang, B. Shen, K. Wang, J. Chen, Journal of Industrial and Engineering Chemistry 19 (2013) 1272. https://doi.org/10.1016/j.jiec.2012.12.028
  41. F.E. Osterloh, Chemistry of Materials 20 (2008) 35. https://doi.org/10.1021/cm7024203
  42. R. Zhang, H. Wu, D. Lin, W. Pan, Journal of the American Ceramic Society 92 (2009) 2463. https://doi.org/10.1111/j.1551-2916.2009.03223.x
  43. X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, Nature Materials 8 (2009) 76. https://doi.org/10.1038/nmat2317
  44. H. Tong, S. Quyang, Y. Bi, N. Umezawa, M. Oshikiri, J. Ye, Advanced Materials 24 (2012) 229. https://doi.org/10.1002/adma.201102752
  45. H. Zhou, Y. Qu, T. Zeid, X. Duan, Energy & Environmental Science 5 (2012) 6732. https://doi.org/10.1039/c2ee03447f
  46. M.H. Habibi, R. Sheibani, Journal of Industrial and Engineering Chemistry 19 (2013) 161. https://doi.org/10.1016/j.jiec.2012.07.019
  47. M. Safari, M. Nikazar, M. Dadvar, Journal of Industrial and Engineering Chemistry 19 (2013) 1697. https://doi.org/10.1016/j.jiec.2013.02.008
  48. Z.-D. Meng, L. Zhu, W.-C. Oh, Journal of Industrial and Engineering Chemistry 18 (2012) 2004. https://doi.org/10.1016/j.jiec.2012.05.019
  49. D. Zhang, G. Li, H. Li, Y. Lu, Chemistry - An Asian Journal 8 (2013) 26. https://doi.org/10.1002/asia.201200123
  50. N. Zhang, S. Liu, Y.-J. Xu, Nanoscale 4 (2012) 2227. https://doi.org/10.1039/c2nr00009a
  51. M.-H. Baek, W.-C. Jung, J.-W. Yoon, J.-S. Hong, Y.-S. Lee, J.-K. Suh, Journal of Industrial and Engineering Chemistry 19 (2013) 469. https://doi.org/10.1016/j.jiec.2012.08.026
  52. M. Fathinia, A.R. Khataee, Journal of Industrial and Engineering Chemistry 19 (2013) 1525. https://doi.org/10.1016/j.jiec.2013.01.019
  53. M.H. Habibi, E. Askari, Journal of Industrial and Engineering Chemistry 19 (2013) 1400. https://doi.org/10.1016/j.jiec.2013.01.003
  54. H. Irie, K. Kamiya, T. Shibanuma, S. Miura, D.A. Tryk, T. Yokoyama, K. Hashimoto, Journal of Physical Chemistry C 113 (2009) 10761. https://doi.org/10.1021/jp903063z
  55. M. Yashima, H. Yamada, K. Maeda, K. Domen, Chemical Communications 46 (2010) 2379. https://doi.org/10.1039/b922008a
  56. Z. Liu, D.D. Sun, P. Guo, J.O. Leckie, Nano Letters 7 (2007) 1081. https://doi.org/10.1021/nl061898e
  57. H.-Y. Chen, D.-B. Kuang, C.-Y. Su, Journal of Materials Chemistry 22 (2012) 15475. https://doi.org/10.1039/c2jm32402d
  58. J. Song, J. Roh, I. Lee, J. Jang, Dalton Transactions 42 (2013) 13897. https://doi.org/10.1039/c3dt51343b
  59. N. Serpone, A.V. Emeline, S. Horikoshi, V.N. Kuznetsov, V.K. Ryabchuk, Photochemical & Photobiological Sciences 11 (2012) 1121. https://doi.org/10.1039/c2pp25026h
  60. H. Kong, J. Song, J. Jang, Environmental Science & Technology 44 (2010) 5672. https://doi.org/10.1021/es1010779
  61. C. Kim, M. Choi, J. Jang, Catalysis Communications 11 (2010) 378. https://doi.org/10.1016/j.catcom.2009.11.005
  62. M. Choi, K.-W. Shin, J. Jang, Journal of Colloid and Interface Science 341 (2010) 83. https://doi.org/10.1016/j.jcis.2009.09.037
  63. D. Barpuzary, Z. Khan, N. Vinothkumar, M. De, M. Qureshi, Journal of Physical Chemistry C 116 (2012) 150.
  64. H.J. Yun, H. Lee, N.D. Kim, D.M. Lee, S. Yu, J. Yi, ACS Nano 5 (2011) 4084. https://doi.org/10.1021/nn2006738
  65. C.C. Pei, W.-F. Leung, Catalysis Communications 37 (2013) 100. https://doi.org/10.1016/j.catcom.2013.03.029
  66. J.B. Joo, I. Lee, M. Dahl, G.D. Moon, F. Zaera, Y. Yin, Advanced Functional Materials 23 (2013) 4246. https://doi.org/10.1002/adfm.201300255
  67. F. Su, T.W.R. Lv, J. Zhang, P. Shang, J. Lum, J. Gong, Nanoscale 5 (2013) 9001. https://doi.org/10.1039/c3nr02766j
  68. H.G. Yang, C.H. Sun, S.Z. Qiao, J. Zou, G. Liu, S.C. Smith, H.M. Cheng, G.Q. Lu, Nature 453 (2008) 638. https://doi.org/10.1038/nature06964
  69. L. Liu, Z. Ji, W. Zou, X. Gu, Y. Deng, F. Gaom, C. Tang, L. Dong, ACS Catalysis 3 (2013) 2052. https://doi.org/10.1021/cs4002755
  70. R.M. Navarro, J. Arenales, F. Vaquero, I.D. Gonzalez, J.L.G. Fierro, Catalysis Today 210 (2013) 33. https://doi.org/10.1016/j.cattod.2013.01.006
  71. Q. Zhang, J. Ye, P. Tian, X. Lu, Y. Lin, Q. Zhao, G. Ning, RSC Advances 3 (2013) 9739. https://doi.org/10.1039/c3ra40596f
  72. L. Di, Z. Xu, K. Wang, X. Zhang, Catalysis Today 211 (2013) 109. https://doi.org/10.1016/j.cattod.2013.03.025
  73. J. Ohyama, A. Yamamoto, K. Teramura, T. Shishido, T. Tanaka, ACS Catalysis 1 (2011) 187. https://doi.org/10.1021/cs100072k
  74. X.-M. Wang, Y.-Y. Xia, Electrochimica Acta 55 (2010) 851. https://doi.org/10.1016/j.electacta.2009.09.037
  75. S.A. Chambers, Advanced Materials 22 (2010) 219. https://doi.org/10.1002/adma.200901867
  76. Slamnet, D. Tristatini, Valentina, M. Ibadurrohman, International Journal of Energy Research 37 (2013) 1372. https://doi.org/10.1002/er.2939
  77. S.H. Hwang, C. Kim, J. Jang, Catalysis Communications 12 (2011) 1037. https://doi.org/10.1016/j.catcom.2011.02.024
  78. K. Ouyang, S. Xie, X. Ma, Ceramics International 39 (2013) 8035. https://doi.org/10.1016/j.ceramint.2013.03.073
  79. B. Huang, Y. Yang, X. Chen, D. Ye, Catalysis Communications 11 (2010) 844. https://doi.org/10.1016/j.catcom.2010.03.006
  80. J. Ng, S. Xu, X. Zhang, H.Y. Tang, D.D. Sun, Advanced Functional Materials 20 (2010) 4287. https://doi.org/10.1002/adfm.201000931
  81. J.S. Lee, O.S. Kwon, J. Jang, Journal of Materials Chemistry 22 (2012) 14565. https://doi.org/10.1039/c2jm32107f
  82. Z. Ma, W. Chen, Z. Hu, X. Pan, M. Peng, G. Dong, S. Zhou, Q. Zhang, Z. Yang, J. Qiu, ACS Applied Materials & Interfaces 5 (2013) 7527. https://doi.org/10.1021/am401827k
  83. Y. Tang, P. Wee, Y. Lai, X. Wang, D. Gong, P.D. Kanhere, T.-T. Lim, Z. Dong, Z. Chen, Journal of Physical Chemistry C 116 (2012) 2772. https://doi.org/10.1021/jp210479a
  84. A. Chen, J. Qian, Y. Chen, X. Lu, F. Wang, Z. Tang, Power Technology 249 (2013) 71. https://doi.org/10.1016/j.powtec.2013.07.031
  85. M. Zhu, Y. Mi, G. Zhu, D. Li, Y. Wang, Y. Weng, Journal of Physical Chemistry C 117 (2013) 18863. https://doi.org/10.1021/jp405968f
  86. G. Tian, Y. Chen, R. Zhai, J. Zhou, W. Zhou, R. Wang, K. Pan, C. Tian, H. Fu, Journal of Materials Chemistry A 1 (2013) 6961. https://doi.org/10.1039/c3ta10511c
  87. D. Chen, T. Li, Q. Chen, J. Gao, B. Fan, J. Li, X. Li, R. Zhang, J. Sun, L. Gao, Nanoscale 4 (2012) 5431. https://doi.org/10.1039/c2nr31030a
  88. G. Pan, B. Li, M. Heath, D. Horsell, M.L. Wears, L.A. Taan, S. Awan, Carbon 65 (2013) 349. https://doi.org/10.1016/j.carbon.2013.08.036
  89. L. Li, B. An, A. Lahiri, P. Wang, Y. Fang, Carbon 65 (2013) 359. https://doi.org/10.1016/j.carbon.2013.08.039
  90. N.K. Memon, F. Xu, G. Sun, S.J.B. Dunham, B.H. Kear, S.D. Tse, Carbon 63 (2013) 478. https://doi.org/10.1016/j.carbon.2013.07.023
  91. M. Kim, N.S. Safron, E. Han, M.S. Arnold, P. Gopalan, ACS Nano 6 (2012) 9846. https://doi.org/10.1021/nn3033985
  92. J. Lium, S. Xu, L. Liu, D.D. Sun, Carbon 60 (2013) 445. https://doi.org/10.1016/j.carbon.2013.04.059
  93. N. Yang, Y. Liu, H. Wen, Z. Tang, H. Zhao, Y. Li, D. Wang, ACS Nano 7 (2013) 1504. https://doi.org/10.1021/nn305288z
  94. K. Parvez, S. Yang, Y. Hernandez, A. Winter, A. Turchanin, X. Feng, K. Mullen, ACS Nano 6 (2012) 9541. https://doi.org/10.1021/nn302674k
  95. E. Lee, J.-Y. Hong, H. Kang, J. Jang, Journal of Hazardous Materials 219 (2012) 13.
  96. Z. Fang, Y. Wang, J. Song, Y. Sun, J. Zjou, R. Xu, H. Duan, Nanoscale 5 (2013) 9830. https://doi.org/10.1039/c3nr03043a
  97. G. Li, D. Zhang, J.C. Yu, Chemistry of Materials 20 (2008) 3983. https://doi.org/10.1021/cm800236z
  98. S.G. Kwon, T. Hyeon, Small 7 (2011) 2685. https://doi.org/10.1002/smll.201002022
  99. N. Zhang, S. Ouyang, P. Li, Y. Zhang, G. Xi, T. Kako, J. Ye, Chemical Communications 47 (2011) 2041. https://doi.org/10.1039/c0cc04687f
  100. H. Li, Z. Bian, J. Zhu, Y. Hou, H. Li, Y. Lu, Journal of the American Chemical Society 129 (2007) 4538. https://doi.org/10.1021/ja069113u
  101. F. Cui, Z. Hua, C. Wei, J. Li, Z. Gao, J. Sji, Journal of Materials Chemistry 19 (2009) 7632. https://doi.org/10.1039/b912016e
  102. S. Sun, W. Wang, S. Zeng, M. Shang, L. Zhang, Journal of Hazardous Materials 178 (2010) 427. https://doi.org/10.1016/j.jhazmat.2010.01.098
  103. H. Labiadh, T.B. Chaabane, L. Balan, N. Becheik, S. Corbel, G. Medjahdi, R. Schneider, Applied Catalysis B: Environmental 144 (2014) 29. https://doi.org/10.1016/j.apcatb.2013.07.004
  104. F.-X. Xiao, J. Miao, H.-Y. Wang, B. Liu, Journal of Materials Chemistry A 1 (2013) 12229. https://doi.org/10.1039/c3ta12856c
  105. P. Lv, W. Fu, H. Yang, H. Sun, Y. Chen, T. Ma, X. Zhou, L. Tian, W. Zhang, M. Li, H. Yao, D. Wu, CrystEngComm 15 (2013) 7548. https://doi.org/10.1039/c3ce40863a
  106. Z. Zou, J. Ye, K. Sayama, H. Arakawa, Nature 414 (2001) 625. https://doi.org/10.1038/414625a
  107. X. Fan, Y. Wang, X. Chen, L. Gao, W. Luo, Y. Tuan, Z. Li, T. Yu, J. Zhu, Z. Zou, Chemistry of Materials 22 (2010) 1276. https://doi.org/10.1021/cm903303v
  108. S.C. Yan, S.X. Quyang, J. Gao, M. Yang, J.Y. Feng, X.X. Fan, L.J. Wan, Z.S. Li, J.H. Ye, Y. Zhou, Z.G. Zou, Angewandte Chemie International Edition 49 (2010) 6400. https://doi.org/10.1002/anie.201003270

Cited by

  1. Photo- and pH-Tunable Multicolor Fluorescent Nanoparticle-Based Spiropyran- and BODIPY-Conjugated Polymer with Graphene Oxide vol.9, pp.10, 2014, https://doi.org/10.1002/asia.201402399
  2. A prototypical development of plasmonic multiferroic bismuth ferrite particulate and fiber nanostructures and their remarkable photocatalytic activity under sunlight vol.2, pp.33, 2014, https://doi.org/10.1039/c4tc01038h
  3. Photoluminescence Studies in II-VI Nanoparticles Embedded in Polymer Matrix vol.357, pp.None, 2014, https://doi.org/10.4028/www.scientific.net/ddf.357.95
  4. 혼합 금속산화물 촉매에서 글리세롤의 수소화 분해반응을 통한 프로필렌 글리콜의 합성 vol.20, pp.1, 2014, https://doi.org/10.7464/ksct.2014.20.1.007
  5. Engineering a high energy surface of anatase TiO2 crystals towards enhanced performance for energy conversion and environmental applications vol.5, pp.26, 2015, https://doi.org/10.1039/c5ra00344j
  6. Radiation Induced Effects on Properties of Semiconducting Nanomaterials vol.239, pp.None, 2014, https://doi.org/10.4028/www.scientific.net/ssp.239.1
  7. Hierarchical BiF3-Bi2NbO5F Core-Shell Structure and Its Application in the Photosensitized Degradation of Rhodamine B under Visible Light Irradiation vol.119, pp.1, 2014, https://doi.org/10.1021/jp5108679
  8. Removal of cadmium ion from wastewater by carbon-based nanosorbents: a review vol.13, pp.1, 2014, https://doi.org/10.2166/wh.2014.024
  9. Synthesis and photocatalytic property of porous metal oxides nanowires based on carbon nanofiber template vol.8, pp.2, 2014, https://doi.org/10.1142/s1793604715500186
  10. Fabrication of platinum nano-crystallites decorated TiO2 nano-tube array photoelectrode and its enhanced photoelectrocatlytic performance for degradation of aspirin and mechanism vol.43, pp.None, 2014, https://doi.org/10.1016/j.jiec.2016.08.006
  11. Investigation of facets-dependent photoactivity of anatase TiO 2 nanobelt with high percentage of {100} facets vol.10, pp.5, 2014, https://doi.org/10.1142/s179360471750059x
  12. Tailored functional materials as robust candidates to mitigate pesticides in aqueous matrices—a review vol.282, pp.None, 2014, https://doi.org/10.1016/j.chemosphere.2021.131056
  13. Impact of dysprosium doped (Dy) zinc ferrite (ZnFe2o4) nanocrystals in photo- fenton exclusion of recalcitrant organic pollutant vol.203, pp.None, 2014, https://doi.org/10.1016/j.envres.2021.111913